CMPT 300 Operating Systems I Summer 1999

Assignment 1

Due: 8:30 A.M. Monday, May 31, 1999.
Weight: 8% of your course grade.

Preliminaries

As with all assignments in this course, a small part of the assessment for this assignment reflects
how your work is presented. Your work must be easy to read. This means:

- Your work must be clear, succinct, grammatically correct, and correctly spelled.

+ Your work must be laid out sensibly. In text, lines should be short enough to be readable
(i.e., don't fill the entire width of the page with text—appropriate use of margins and other
blank space on a page can dramatically improve the readability of your work).

+ Unless there is a compelling reason to do otherwise, all pages should be on letter-size
paper, with content in the portrait orientation. Pages should be held together with a single
staple in the top lefthand corner.

- Avoid unnecessary embellishment—you should not use presentation folders.

Most students find it easier to create their answers to assignments using a word processor
or equivalent program. Although you may handwrite your answers, it is much easier to check
and correct grammar and spelling on a computer screen than a handwritten page. If you choose
to handwrite your answers, they must be neat, tidy and legible.

The late policy for all assignments is as follows: 10% penalty for being one day late, 20%
penalty for being two days late. Assignments may be handed in early. No assignments will be
accepted more than two days late. The late period begins immediately after the beginning of
class on the due date (i.e., handing in your work at 9 A.m. on the Monday it is due counts as one
day late).

This assignment may be refined or clarified in class or e-mail.

Programming Exercises

For this programming assignment, you will be modifying C++ source code. This source code
is available on the Web at http://www.cs.sfu.ca/CC/300/oneill/Homework/assign1.tar.gz and also in
/gfs1/CMPT/300/src/assign1.tar.gz on CsiL. You can expand this archive file using the command
gzcat assign1.tar.gz | tar —xvf — on any UNIx system. You can also find the contents of this archive
file in the directory /gfs1/CMPT/300/src/assign1.

For each of the programming exercises below, develop the program as indicated in the ques-
tion, and then include the source listing for the program in your report along with any com-
mentary you feel is necessary to explain it. Your programs must be short (your changes should
easily fit on a single page), but clear and robust. If the program detects an error (e.g., premature
end of file), it should return exit status 1 (but no error message).

You may program in either C or C++. The source code provided is in C++, but does not use
advanced C++ features—it should be straightforward to port the code to plain C.



P1.

P2.

P3.

P4.

Read the Unix manual page for the system program cat. Write your own version, called
mycat, that performs the basic functionality of cat (i.e., it does not need to take option
switches). Copy filecopy.cc to a new file called mycat.cc, and adapt it as necessary. You
must use the copyout function as provided-do not modify it.

On your hardcopy source listing, use a highlighter to indicate the code you have written.
Tip: Standard input is file descriptor zero. Standard output is file descriptor one.
The filecopy program does not include any handling for interrupt signals. If the user

presses Control-C while the file is being copied, the program will exit and leave a partial
copy behind.

Adjust the code to catch the SIGINT signal and remove the partial copy (if the file has not
been completely copied) before exiting.

On your hardcopy source listing, use a highlighter to indicate the code you have written.

The filecopy program incurs the overheads of the C++ iostream library even though cerr is
only used to print a short error message in the event of failure.

Adjust the code to print the same error message using a single invocation of the write
system call.

On your hardcopy source listing, use a highlighter to indicate the code you have written.

Read the Unix manual page for the system program wc. Write your own version, called
mywc, that performs the basic functionality of wc (i.e., it does not need to take option
switches or command-line arguments and only reads from standard input).

Your program may not (explicitly) call any functions in the standard C or C++ libraries ex-
cept for isspace—everything else must be accomplished through system calls or functions
you have written yourself.

Written Exercises

WI1.

w3.

If you modify BUFFER_SIZE in filecopy.cc you will find that increasing the buffer size does
not make much of an impact on performance, but reducing it can make a significant
difference (try setting BUFFER_SIZE to 8 or even 1).

(a) Why does a small buffer size cause such poor performance?
(b) Why doesn't increasing the buffer size beyond 4096 help much?

(c) Explain why a program performing one system call and 1000 subroutine calls should
perform better than a similar program that performs no subroutine calls and 1000
system calls.

. Recently, some operating systems have added a system call identical in functionality to

the copyout function in filecopy.cc. Give the tradeoffs involved in providing this function-
ality as a system call versus providing it as a subroutine in a programmer’s library.

You should have been reading the Kernel Traffic Web site during the first few weeks of the
course. Pick one topic discussed there, describe the issue briefly and make constructive
comments of your own. (Include the date of the original discussion and the issue number
of Kernel Traffic).



