CMPT 295
Unit – Processor Design & Instruction Execution
Lecture 29 – Pipelined Execution
Last Lecture - 1

- Sequential execution of machine instructions

- **Processor design #1: Sequential execution**
 - Executing 1 machine instruction per clock cycle

- Issue: Long clock cycle -> slow computer 😞 (small throughput)

- Analysis of processor instruction execution:
 - Latency (propagation delay): Time required to execute a single instruction
 - Throughput: Number of instructions executed per second - GIPS
How to improve throughput

- Divide the execution of instructions into stages: fetch, decode, execute, memory, write back
- Introduce clocked registers (pipeline registers) after each stage
- Processor design #2: Staged execution

Result: Shorter (faster) clock cycle -> faster computer 😊

Issues:
- Added clocked registers increase latency
- Stages may not have equal propagation delay
Today’s Menu

- Instruction Set Architecture (ISA)
 - Definition of ISA
 - ISA design
 - ISA evaluation
 - Improving our ISA -> Decreasing effect of von Neumann bottleneck
 - 3 Strategies

- Execution of machine instructions
 - Intro to logic design, combinational and sequential logic circuits
 - Sequential execution of machine instructions
 - **Pipelined execution** of machine instructions
Pipelining

- Example: fast food counter versus cafeteria

- Start executing a new instruction at every clock cycle
- Effect: Different stages of different instructions overlap
A closer look:

Instruction₁:

ADD r0, r5:

F
IR ← M[PC]
PC ← PC+1

D
valA ← r[0]
valB ← r[5]

E
valE ← valA + valB

M

W
r[5] ← valE
Clock cycle:

1. F/I_1
2. F/I_2
3. F/I_3
4. F/I_4
5. F/I_5
6. D/I_5

Pipelined Execution
Analysis

- **Sequential Execution – 1 stage:**
 - Latency - cost per instruction:
 - 400 ps + 20 ps = 420 ps
 - CPU throughput: 1 / 420 ps = 2.38 GIPS
 - Clock cycle: 400 ps + 20 ps = 420 ps

- **Staged Execution – 5 stages:**
 - Latency - cost per instruction:
 - \((400/5 \text{ ps} + 20 \text{ ps})^5 = 500 \text{ ps} \)
 - CPU throughput: 1 / 500 ps = 2 GIPS
 - Clock cycle: 80ps + 20ps = 100ps

- **Pipelined Execution – 5 stages:**
 - Latency - cost per instruction: \((400/5 \text{ ps} + 20 \text{ ps})^5 = 500 \text{ ps} \) has not changed!
 - CPU throughput: 5 / 500 ps = 10 GIPS
 - Clock cycle: 80ps + 20ps = 100ps has not changed!

Conclusion:
- Instruction latency: \(\uparrow \)
- CPU throughput: \(\uparrow \)
- Clock cycle: \(\downarrow \)
Limitations of pipelining - 1

1. Would doubling the number of stages (5 -> 10) double the throughput (10 GIPS -> 20 GIPS)?

- Cost of each stage
 -> 400/10 ps + 20 ps = 40 ps + 20 ps = 60 ps
- CPU throughput -> 1 / 60 ps = 16.67 GIPS
- So?
 - Nop! (not quite 20 GIPS)
Limitations of pipelining - 2

2. What if stages have different delays?
 - Sum of delays through all the stages remains the same
 - But, clock cycle limited by delay of slowest stage
Summary

- Pipelining
- Analysis of pipelined execution using best case pipeline scenario (all stages have the same propagation delay)
 - Impact on CPU throughput
- Limitations on pipelined execution
 - Limitation 1
 - Doubling the number of stages does not double the throughput
 - Limitation 2
 - Non-uniform stage delays – not every stage has same delay
 - Longest delay wins all
Next Lecture

- Instruction Set Architecture (ISA)
 - Definition of ISA
 - ISA design
 - ISA evaluation
 - Improving our ISA -> Decreasing effect of von Neumann bottleneck
 - 3 Strategies
 - Improving our ISA - Decreasing effect of von Neumann bottleneck
 - 3 Strategies

- Execution of machine instructions
 - Intro to logic design, combinational and sequential logic circuits
 - Sequential execution of machine instructions
 - Pipelined execution of machine instructions
 - Hazards