CMPT 295
Data Representation
Lecture 6 – Representing real numbers - IEEE floating point representation
Last Lecture

- Demo (code and results) posted!

- **Addition:**
 - **Unsigned/signed:**
 - Behave the same way at the bit level
 - Interpretation of resulting bit vector (sum) may differ
 - **Unsigned:** $$(x + y) \mod 2^w$$ (sum in proper range)
 - Integer addition with possible subtraction of 2^w
 - **Signed: $U2T_w[(x + y) \mod 2^w]$** (sum in proper range)
 - Integer addition with possible addition or subtraction of 2^w

- **Subtraction**
 - Becomes an addition where negative operands are transformed into their additive inverse

- **Multiplication:**
 - **Unsigned:** $$(x \ast y) \mod 2^w$$ (product in proper range)
 - **Signed: $U2T_w[(x \ast y) \mod 2^w]$** (product in proper range)
 - Can be replaced by additions and shifts
Today’s Menu

- Representing information as bits
 - “Under the Hood” - A look at memory
 - Bit manipulation

- Representing integers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations

- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C – casting, rounding, addition, …
Review: Real numbers

- Positional notation:

Example:

$$2.345 = 2 \times 10^0 + 3 \times 10^{-1} + 4 \times 10^{-2} + 5 \times 10^{-3}$$
How would 346.625 (= 346 5/8) be represented in memory?

Here is a possible encoding scheme:

Step 1 – 346.625 -> 346 .625

Binary representation is:
Representing real numbers

- Positional notation: can this be a possible encoding scheme?

\[
b_i \ b_{i-1} \ \cdots \ b_2 \ b_1 \ b_0 \ b_{-1} \ b_{-2} \ b_{-3} \ \cdots \ b_{-j}
\]
Positional notation as encoding scheme?

-> Conversion

Using the positional notation as an encoding scheme
- Reals <-> binary
- What is 1011.101_2 as a real number?

<table>
<thead>
<tr>
<th>Negative Powers of 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{-1}</td>
<td>0.5</td>
</tr>
<tr>
<td>2^{-2}</td>
<td>0.25</td>
</tr>
<tr>
<td>2^{-3}</td>
<td>0.125</td>
</tr>
<tr>
<td>2^{-4}</td>
<td>0.0625</td>
</tr>
<tr>
<td>2^{-5}</td>
<td>0.03125</td>
</tr>
<tr>
<td>2^{-6}</td>
<td>0.015625</td>
</tr>
<tr>
<td>2^{-7}</td>
<td>0.0078125</td>
</tr>
<tr>
<td>2^{-8}</td>
<td>0.00390625</td>
</tr>
</tbody>
</table>
Positional notation as encoding scheme?

-> Arithmetic operations

Using the positional notation as an encoding scheme

- Resulting binary encodings can be
 - added
 - multiplied by 2 by shifting left
 - divided by 2 by shifting right (unsigned)

- Example:

 Divide by 2: >>
 \[1011.101_2 = 11 \ 5/8 \ = \ 8 + 2 + 1 + 1/2 + 1/8 \]
 \[101.1101_2 = 5 \ 13/16 \ = \ 4 + 1 + 1/2 + 1/4 + 1/16 \]
 \[10.11101_2 = 2 \ 29/32 \ = \ 2 + 1/2 + 1/4 + 1/8 + 1/32 \]
Positional notation as encoding scheme?

- Advantage:
 - Straightforward arithmetic: can shift to multiply and divide, convert

- Disadvantage:
 - Cannot encode all reals: can only exactly represent numbers of the form $x/2^k$ (within a range)
 - Limited range: Only one setting of binary point within the w bits

- What is the range?
 - Example -> $w = 32$ bits and binary point is located at 16^{th} bit: $[31..16].[15..0]$

 $1111111111111111.1111111111111111$

 - Range:
Representing real numbers in memory

- Here is another possible encoding scheme:
 IEEE floating point representation

- Overview:
 - Numerical Form: \(V = (-1)^s \ M \ 2^E \)
 - \(s \) - Sign bit -> determines whether number is negative or positive
 - \(M \) - Significand (or Mantissa) -> fractional part of number
 - \(E \) - Exponent

- Encoding
 - MSbit \(s \) (similar to sign-magnitude encoding)
 - exp field encodes \(E \) (but is not equal to \(E \))
 - frac field encodes \(M \) (but is not equal to \(M \))
IEEE Floating Point Representation
Precision options

- Single precision: 32 bits \(\approx\) 7 decimal digits, \(10^{\pm 38}\)
 - 1 8-bits 23-bits

- Double precision: 64 bits \(\approx\) 16 decimal digits, \(10^{\pm 308}\)
 - 1 11-bits 52-bits
IEEE Floating Point Representation

Three “kinds” of values

- **denormalized**: 00...00
- **normalized**: $\exp \neq 0$ and $\exp \neq 11...11$
- **special cases**: 11...11

s	\exp	frac

k bits | n bits

$E = \exp - \text{bias}$
and $\text{bias} = 2^{k-1} - 1$

$M = 1 + \frac{\text{frac}}{}$
Back to ...
Representing real numbers in memory

How would 346.625 (= 346 5/8) be represented in memory?

a) Normalize the binary number

b) Determine s:
 M:
 frac:
 E:
 bias:
 exp:

Result:
Review: Scientific Notation

- From Wikipedia: a way of expressing numbers that are too big or too small to be conveniently written in decimal form

- Examples:
 - A proton's mass is 0.0000000000000000000000000016726 kg -> 1.6726×10^{-27} kg
 - Speed of light is 299,792,458 m/s -> $2.99792,458 \times 10^8$ m/s

Syntax

$$ \pm \ \underbrace{d_0 \ d_{-1} \ d_{-2} \ d_{-3} \ldots \ d_{-n}}_{\text{significand}} \times \ b^{\text{exp}} $$

- sign
- significand
- base
- exponent
Let’s practice!

- How would 346.62 be represented in memory?
Summary

- Integer representation: encode small range of values exactly
- Representing real numbers in memory
 - Positional notation (advantages and disadvantages)
 - IEEE floating point representation: wider range, mostly approximately
- Overview of IEEE Floating Point representation
 - \(V = (-1)^s \times M \times 2^E \)
 - Precision options
 - Normalized, denormalized and special values
Next Lecture

- Representing information as bits
 - “Under the Hood” - A look at memory
 - Bit manipulation

- Representing integers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations

- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C – casting, rounding, addition, …