CMPT 295
Unit - Data Representation
Lectures 4 and 5 – Representing integers in memory - Arithmetic operations
Summary

- Interpretation of bit patterns into either unsigned or signed values
 - $B2U(X)$ and $U2B(X)$ encoding schemes
- Conversions from unsigned \leftrightarrow signed values - $B2T(X)$ and $T2B(X)$
- Signed value expressed as two's complement
- Implication in C: when converting (implicitly and explicitly via casting):
 - Sign:
 - Unsigned \leftrightarrow signed (of same size) \rightarrow Bit pattern is maintained, but reinterpreted
 - Can have unexpected effects: adding or subtracting 2^w
 - Size:
 - Small \rightarrow large (both signed or both unsigned - e.g., short to int)
 - sign extension: Unsigned \rightarrow zeros extension, signed \rightarrow sign bit extension
 - Both yield expected result
 - Large \rightarrow small (e.g., unsigned to unsigned short)
 - truncation: Unsigned/signed \rightarrow most significant bits are truncated
 - May alter original value
 - Both (sign and size): 1) size then 2) sign
Today’s Menu

- Representing information as bits
 - “Under the Hood” - A look at memory
 - Bits in memory
 - Encoding scheme
 - Endian
 - Bit manipulation
 - Boolean algebra + Shifting

- Representing integers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations

- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C – casting, rounding, addition, …
What happens when we add two decimal numbers?

\[
\begin{array}{c}
107 \\
+ \ 938 \\
\hline
1045
\end{array}
\]

Same thing happens when we add two binary numbers:

\[
\begin{array}{c}
101100_2 \\
+ \ 101110_2 \\
\hline
1011110_2
\end{array}
\]
Unsigned addition (limited space, i.e., fixed size memory)

What happens when we add two unsigned values:

\(w = 8 \)

a) \(\begin{array}{c}
00111011_2 \\
+ 01011010_2 \\
\hline
01110101_2
\end{array} \)

b) \(\begin{array}{c}
10101110_2 \\
+ 11001011_2 \\
\hline
10100001_2
\end{array} \)
Unsigned addition \((+_w^u) \) and overflow

- Operands: \(w \) bits
- True Sum: \(w+1 \) bits
- Discard carry out bit: \(w \) bits (overflow)

- Discarding carry out bit has same effect as applying modular arithmetic
 \[s = u +^w u v = (u + v) \mod 2^w \]

Would be the result of **normal integer addition** with unlimited space

Result of **unsigned addition** with limited space

Overflow

True Sum

\[2^{w+1} \]

\[2^w - 1 \]

\[0 \]

\[u +^u w v \]
Closer look at unsigned addition overflow

\[w = 8 \]

\[
\begin{array}{c}
255_{10} = 11111111_2 \\
90_{10} = 01011010_2 \\
45_{10} = 00101101_2 \\
\end{array}
\]

\[
\begin{array}{c}
90_{10} \\
+ 45_{10} \\
\hline
135_{10}
\end{array}
\]

\[
\begin{array}{c}
01011010_2 \\
+ 00101101_2 \\
\hline
11011111_2
\end{array}
\]

\[
\begin{array}{c}
255_{10} \\
+ 45_{10} \\
\hline
300_{10}
\end{array}
\]

\[
\begin{array}{c}
01011010_2 \\
+ 00101101_2 \\
\hline
11011111_2
\end{array}
\]

Actual sum

True Sum

Overflow
Comparing integer addition with unsigned addition ($w = 4$)

Overflow: Effect of fixed size memory

An overflow occurs when there is a carry out
Signed addition (limited space, i.e., fixed size memory)

- What happens when we add two signed values:

\[
\begin{align*}
\text{w} &= 8 \\
a) & \quad 00111011_2 \\
& \quad + \ 01011010_2 \\
b) & \quad 10111010_2 \\
& \quad + \ 11001011_2 \\
\end{align*}
\]

Observation:
Signed addition \(+^t_w\) and overflow

Operands: \(w\) bits
True Sum: \(w+1\) bits

Discard carry out bit: \(w\) bits (overflow)

- Discarding carry out bit has same effect as applying modular arithmetic
 \[s = u +^t_w v = U2T_w [(u + v) \mod 2^w] \]

True Sum

\[
\begin{array}{c}
2^w - 1 \\
2^w - 1 - 1 \\
0 \\
-2^w - 1 \\
-2^w \\
\end{array}
\]

- Positive Overflow
- Negative Overflow

Result of signed addition with limited space

Would be the result of normal integer addition with unlimited space
Closer look at signed addition overflow

\[w = 8 \]

\[
\begin{array}{c}
90_{10} = 01011010_2 \\
45_{10} = 00101101_2 \\
-45_{10} = 11010011_2 \\
-90_{10} = 10100110_2
\end{array}
\]

\[
\begin{array}{c}
90_{10} + 45_{10} = 135_{10} \\
90_{10} + 00101101_2 = 10101101_2 \\
-90_{10} + -45_{10} = -135_{10} \\
-90_{10} + 11010011_2 = 01011010_2
\end{array}
\]

True Sum

Positive Overflow

Negative Overflow

Actual sum
Visualizing signed addition overflow ($w = 4$)

Negative Overflow

Positive Overflow
What about subtraction? -> Addition

- 107
- 118
=> + (-118)

- Subtracting a number is equivalent to adding its additive inverse
- Let’s try: 107 -> 01101011 -> 01101011
 - 118 -> -01110110 -> +
Multiplication ($\ast \! _w^u$, $\ast \! _w^t$) and overflow

Operands: w bits

True Product: $2w$ bits

Discard: w bits

- Discarding high order w bits has same effect as applying modular arithmetic

 \[p = u * \! _w^u v = (u * v) \mod 2^w \]

 \[p = u * \! _w^t v = U2T_w [(u * v) \mod 2^w] \]

Would be the result of normal integer multiplication with unlimited space

Result of multiplication with limited space

Example:
Multiplication with power-of-2 versus shifting

- If \(x \times y \) where \(y = 2^k \) then \(x \ll k \)
 - For both signed and unsigned

- Example:
 - \(x \times 8 = x \times 2^3 \Rightarrow x \ll 3 \)
 - \(x \times 24 = (x \times 2^5) - (x \times 2^3) = (x \times 32) - (x \times 8) \Rightarrow (x \ll 5) - (x \ll 3) \)
 (decompose 24 in powers of 2: \(32 - 8 \))

- Most machines shift and add faster than multiply
 - We’ll soon see that compiler generates this code automatically
Summary

- Demo (code and results) posted!
- Addition:
 - Unsigned/signed:
 - Behave the same way at the bit level
 - Interpretation of resulting bit vector (sum) may differ
 - Unsigned: \((x + y) \mod 2^w\) (sum in proper range)
 - Integer addition with possible subtraction of \(2^w\)
 - Signed: \(\text{U2T}_w [(x + y) \mod 2^w]\) (sum in proper range)
 - Integer addition with possible addition or subtraction of \(2^w\)
- Subtraction
 - Becomes an addition where negative operands are transformed into their additive inverse
- Multiplication:
 - Unsigned: \((x \times y) \mod 2^w\) (product in proper range)
 - Signed: \(\text{U2T}_w [(x \times y) \mod 2^w]\) (product in proper range)
 - Can be replaced by additions and shifts
Next lecture

- Representing information as bits
- Representing integers in memory
 - Unsigned and signed
 - Converting, expanding and truncating
 - Arithmetic operations
- Representing real numbers in memory
 - IEEE floating point representation
 - Floating point in C – casting, rounding, addition, ...