
CMPT 250: Weeks 8-9 (Oct 24 to Nov 5)

1. INSTRUCTION SET ARCHITECTURES (Continued)

1.1. PROBLEM SPECIFICATION AND ANALYSIS (Continued)

Last week’s notes described how an instruction set formed the basis of the
functional specification of a CPU. Different possible designs for that CPU can be
obtained by examining the instruction set from different viewpoints. This analysis
is continued here with a summary describing how instructions may be examined:

1. By grouping instructions according to function (see last week’s
notes).

2. By fixing the number of explicit operands (see last week’s notes).
One-operand and register-memory machines suggest the importance
of having many work registers in the CPU. There are two ways to
achieve this, and the corresponding instruction styles are as follows:

• 0-operand architecture
PUSH A S[TOP] <- M[A], TOP <- TOP-1
PUSH B S[TOP] <- M[B], TOP <- TOP-1
ADD TOP <- TOP+1;

S[TOP+1]<-S[TOP+1]+S[TOP]
PUSH C S[TOP] <- M[C], TOP <- TOP-1
PUSH D S[TOP] <- M[D], TOP <- TOP-1
SUB TOP <- TOP+1;

S[TOP+1]<-S[TOP+1]-S[TOP]
MPY TOP <- TOP+1;

S[TOP],S[TOP+1]<-S[TOP+1]+S[TOP]

POP F TOP <- TOP+1;
M[F] <- S[TOP]

POP F+4 TOP <- TOP+1;
M[F+4] <- S[TOP]

In this case the registers are provided by an internal stack
memory; that is, a memory implemented as an internal,
hardware push-down-store.

(C) A.H.Dixon page..50

• register-register architecture
LW s2, A s2 <- M[A]
LW s3, B s3 <- M[B]
LW s4, C s4 <- M[C]
LW s5, D s5 <- M[D]
ADD s0, s2, s3 s0 <- s2 + s3
SUB s1, s4, s5 s1 <- s4 - s5
MPY s6, s0, s1 s6,s7 <- s0*s1
SW s6, F M[F] <- s6
SW s7, F+4 M[F+4} <- s7

Here the set of work registers is provided by a register-file; that
is, a memory whose architecture permits simultaneous retrieval
and storage from its internal locations.

3. By classifying instructions on the basis of the way the operands are
specified within the instruction format; that is, by judicious use of
different addressing modes:

a. Implied: The operands are not part of the instruction format.

b. Immediate: The value of the operand is embedded in the
instruction.

c. Register: The operands are provided in registers that are
specified in the address field of the instruction.

d. Direct: The location of the operand is embedded in the
instruction.

e. Indirect: The location of the address of the operand is
embedded in the instruction.

f. Indexed: The location of the operand is computed from
values provided within the instruction and in an index
register. The effective address is obtained by adding a
displacement to a base address.

g. Relative: The PC provides the base address, with the
displacement embedded in the instruction.

(C) A.H.Dixon page..51

2. REGISTER-REGISTER CPU DESIGN

2.1. GENERAL DESIGN STRATEGY

1. For each instruction specified:

• Define a unique opcode

• Define an instruction format

• Define an ASM to define the steps to be performed when the
instruction is executed, called the Execute Cycle for the
instruction. The execute cycle may consist of two phases:
execute and write back.

2. Define an ASM to control the activities performed during instruction
retrieval, called the Fetch Cycle. The fetch cycle may consist of two
phases: instruction fetch and operand fetch.

3. Develop a structural model for the "datapath" component of the
sequential circuit that constitutes the CPU using the algorithmic
specifications given by the set of ASMs developed in the previous
steps. Note that the controller (sequencer and control point selector)
will be represented by a "black box" in this diagram.

4. Resolve the details of each component using the standard tools and
techniques.

2.2. REGISTER FILES

A register file is a set of registers connected in such a way that one or more
registers can be enabled for retrieval and possibly one or more registers enabled for
storing values, all simultaneously. For each register that must be accessed, there
must be a corresponding input address that selects the desired register, and a
control point that enables either retrieval or storage to the address selected.
Typical register files may have one or two read-address inputs and usually a single
write-address output, and are referred to as one-read-one-write or
two-read-one-write register files.

The behavioral model for a two-read-one-write register file is:

(C) A.H.Dixon page..52

R[waddr] <- inbus
outbus2 <- R[raddr2]
outbus1 <- R[raddr1]

outbus1
raddr2

outbus2 <- R[raddr2]
outbus1 <- R[raddr1]

1

0

w FUNCTION

FILE
REGISTER

w

outbus2inbus

waddr

raddr1

Figure 2-1: Behavioral specification of a register file

3. A DESIGN EXAMPLE

3.1. INSTRUCTION SET SPECIFICATION

The MIPS machine is an example of a register-register machine. It is described
in some detail in the book "Computer Organization and Design", by Hennessy and
Paterson (see related readings). The following example illustrates how the
technique for sequential machine design described in class can be used to develop
the architecture discussed in that text.

As with all designs we begin with a proposed instruction set. In this case it is a
small subset of the MIPS assembly language; specifically, the instructions
described on the next page.

The instructions are divided into two formats:
1. R-format is used for register-register instructions. All such

instructions have the same value in the opcode field: 0. Each such
instruction is distinguished from another by the value in the fn-sel
field of the instruction.

2. I-format is used for register-memory instructions. These
instructions provide two types of addressing mode: direct and
indexed.

(C) A.H.Dixon page..53

42

PC <- PC + offset
IF R[rs]= R[rt] then

M[offset + R[rs]] <- R[rt]

ELSE R[rd] <- 0
IF R[rs]<R[rt] then R[rd] <- 1

R[rd] <- R[rs] or R[st]

R[rd] <- R[rs] and R[rt]

R[rd] <- R[rs] - R[rd]

R[rd] <- R[rs] + R[rt]

10..6

samt

4

43

35

37

36

34

32

5..015..1120..1625..2131..26

R[rt] <- M[offset + R[rs]]

beq

sw

lw

I-type

R-typefn-selrdrtrs

offsetrtrsopcode

0

slt

or

and

sub

add

Figure 3-1: MIPS instruction subset and format

(C) A.H.Dixon page..54

Note the location of the fields used to specify each register operand. Since 5 bits
have been allocated for each register, 32 registers can be addressed. These
registers are represented symbolically in MIPS assembly language as follows:

REGISTER SYMBOLIC NAME
-------- ----------------
0: $zero
8..15: $t0, $t1,..., $t7
16..23: $s0, $s1,..., $s7
24,25: $t8,$t9
<13 more registers>

To determine the machine instruction, given its symbolic representation, use the
information provided by the instruction set format definition. For example:

EXAMPLE 1:
MIPS assembly instruction: sub $t2, $t2, $s2

IR(31..26) = 000000 (R-type instruction)
IR(25..21) = 01010 (rs = $t2 = reg 10)
IR(20..16) = 10010 (rt = $s2 = reg 18)
IR(15..11) = 01010 (rd = $t2 = reg 10)
IR(10..6) = 00000 (no shift required)
IR(5..0) = 100010 (fn-sel "sub" = 34)

EXAMPLE 2:
MIPS assembly instruction: sw $t0, 0($s4)

IR(31..26) = 101011 (I-type instruction)
IR(25..21) = 01000 (rs = $s4 = reg 20)
IR(20..16) = 10100 (rt = $t0 = reg 8)
IR(15..0) = 0000 0000 0000 0000 (offset = 0)

3.2. FORMAL SPECIFICATION OF THE CPU

ASSUMPTION: The processor design ia based on the Von Neumann
Architecture. The von Neumann Model (also called the Princeton Model) is the
most common computer model in existence and more than 90% of exsting
computers are based on this model. With this model, instructions and data share
the same memory, data paths and processing components.

The adoption of this model has the advantage that it simplifies the hardware
design. However, because programs and data share the same components, it will
be necessary for the processor to keep track of whether it is fetching an instruction
or fetching data when it performs a memory retrieval. As a consequence, the task
of executing an instruction is broken into two steps - a fetch cycle and an execute
cycle.

The Fetch Cycle: The purpose of the fetch cycle is to retrieve an instruction and
place it in a suitable location within the processor for decoding. This location is

(C) A.H.Dixon page..55

called the Instruction Register or IR. This cycle must therefore keep track of
where the next instruction is found, and this is achieved using a register called a
program counter or PC. Finally, some decoding of the instruction may also take
place, usually to identify the operands of the instruction (operand fetch).

The ASM diagram for the the fetch cycle of the µMIPS machine whose
instruction set was provided previously is given by ASM blocks F1 (instruction
fetch) and F2 (operand fetch) on the following page.

The Execute Cycle: Once an instruction is in the IR, it can be interpreted by the
controller. Specifically this interpretation involves:

1. Identifying the instruction to be executed.

2. Retrieving from memory any operands required for execution. This
is distinct from the oerand fetch phase in that an effective address
must be calculated (execute phase) and the data retrieved

3. Performing a sequence of register transfer expressions, which
collectively define what it means to execute the instruction (execute
phase).

4. If a result has been computed it needs to be stored in the register file
(write-back phase).

5. Recognizing completion of an instruction, and initiating another fetch
cycle.

To perform an execute cycle for a given instruction requires that the processor
datapath provide the necessary data flow paths, registers, and combinational logic
as defined in the set of register transfer statements which characterize the
execution of the instruction. The ASM diagrams for the fetch and execute cycles
for the µMIPS machine are given on the next two pages.

(C) A.H.Dixon page..56

0
E

A0

1

0

110
A<BIR(fn)=42

F<-1
R[IR(rd)]<-1

F<-1
R[IR(rd)]<- 0

1

A1

A0

0 0 0 0

11 1 1

1
0

0

10

1 IR(fn)=37IR(fn)=36IR(fn)=34IR(fn)=32

IR(op)=0F

F<-1
R[IR(rd)]<-ALUout

ALUout<-AvB

ALUout<-AB

ALUout<-A-B

ALUout<-A+B

F<-0
ALUout<-PC+IR(off)

B<-R[IR(rt)]
A<-R[IR(rs)]

PC<-PC+4
IR<-M[PC]

F2
F1

F

Figure 3-2: Fetch and Execute ASM Diagrams Part I

(C) A.H.Dixon page..57

0 1

0
B0

F<-1
PC<-ALUout

A=B F<-1

1

10
IR(op)=4F

01

10

S1

S0

F<-1
M[ALUout]<-B

ALUout<-A+IR(off)IR(op)=43F

01

10
IR(op)=35F

L1

L0

F <- 1
R[IR(rt)]<-M[ALUout]

ALUout<-A+IR(off)

Figure 3-3: Execute ASM Diagrams Part II

By defining the instruction set and specifying the ASM for each instruction, we
have sufficient information to define the internal organization of the processor.
Although it is possible to describe the machine behaviour with a single large ASM
diagram, it is convenient to repesent each the fetch cycle and each instruction’s
execute cycle by a separate ASM and view the collection as describing a set of
machines that are running independently, sharing common components to
communicate when one machine has completed a task and when another can start.

(C) A.H.Dixon page..58

From the ASM Diagrams the register requirements and the inter-register data
transfer requirements can be defined. The register transfer statements are grouped
by destination:

PC: PC <- ALUOut
PC <- PC + 4

IR: IR <- M[PC]

A: A <- R[IR(rs)]

B: B <- R[IR(rt)]

ALUOut: ALUOut <- PC + IR(offset)
ALUOut <- A + IR(offset)
ALUOut <- A op B

op = +, - , and, or

R[..]: (storage)
R[IR(rt)] <- M[ALUout]
R[IR(rd)] <- ALUOut
R[IR(rd)] <- 0
R[IR(rd)] <- 1

(retrieval)
A <- R[IR(rs)]
b <- R[IR(rt)]

M[..]: (storage)
M[ALUOut] <- B

(retrieval)
IR <- M[PC]
R[IR(rt)] <- M[ALUOut]

The register file required must therefore be able to retrieve two values and store
one value simultaneously; that is, a 2-read, 1-write register file is required.

From the register transfer statement analysis it is evident that the PC, ALUOut,
and both address inputs of the register file have multiple sources. The resulting
architecture for the processing component of the CPU is given on the next page.

(C) A.H.Dixon page..59

sw0

sw1
2

a=b

a<b

kf

jf
F

COMP
a

lalu

la

lb

s0
s1

sop1

f2,f1,f0

w

sin0
sin1

swa

lir

spc

rm
cs

lpc

aluout b

ext

a

b

aluout

pc
a

b

4

ext

1

0

EXT

A

B

out
U
L
A

ALU

1

2

1

0

3

2

1

0

M

0

1PC

out2

out1in

IR

3

2

1

0

r1a

r2a

wa0

1

op

rs

rt

rd

off

(C) A.H.Dixon page..60

