
CMPT 250 : Week 3 (Sept 19 to Sept 26)

1. DESIGN FROM FINITE STATE MACHINES (Continued)

1.1. ONE FLIP-FLOP PER STATE METHOD

From a state diagram specification, a sequencer can be constructed using the one-
D-flip-flop-per-state method instead of having to construct the characteristic table.
The states are encoded as:

S0 = 001,
S1 = 010,
S2 = 100

Denote the ith bit of this encoding by Qi. Then Qi is asserted only when we are
in state Si. By examining the state diagram construct product terms for each
transition arrow consisting of the departing state (Qi) and the external boolean
input expression labelling the arrow. Then sum the product terms of all arrows
with the same destination state Qj. This sum of products is the flip flop input
function for the flip flop representing Sj.

The resulting flip-flop input functions are:
D0 = data’*Q0 + eq0*Q1

D1 = data*Q0 + data*Q2

D2 = eq0’*Q1 + data’*Q2

Only one of Q0, Q1, or Q2 is asserted when we are in states S0, S1, or S2
respectively.

1.2. MULTIPLEXER / REGISTER / DECODER METHOD

With this method, we summarize for each state the required inputs necessary to
achieve the next state suggested by the state diagram. We then define FF input
function assignments for the set of transitions from a particular state. Using the
example state diagram above:

(C) A.H.Dixon page..16

PRES NEXT REQD D FF INPUTS
STATE STATE INPUTS

00 00 data’ D1=0, D0=data
00 01 data

01 00 eq0 D1=eq0’, d0=0
01 10 eq0’

10 01 data D1=data’, D0=data
10 10 data’

From this table we "sum" the individual cases for each flip-flop (without
simplification):

D1 = 0*Q1’Q0’ + eq0’*Q1’Q0 + data’*Q1Q0’

D0 = data*Q1’Q0’ + 0*Q1’Q0 + data*Q1Q0’

Now it is possible to implement these functions with gate level logic. However
these equations suggest using 4x1 multiplexers whose behavior is defined by:

mux(d1,d1,d2,d3,s0,s1) =
d0*s1’s0’ + d1*s1’s0 + d2*s1s0’ + d3*s1s0

We can implement the required combination logic using one 4x1 multiplexer per
flip-flop by substituting:

for D1:
s1 = Q1, s0 = Q0
d0 = d3 = 0, d1 = eq0’, d2 = data’

for D0:
s1 = Q1, s0 = Q0
d0 = data, d2 = data, d1 = d3 = 0

A decoder can be used in the same manner as with the excitation method to
obtain the outputs S0, S1, S2 from the state outputs Q1 and Q0.

2. SPECIFICATION WITH ALGORITHMIC STATE MACHINES

Every algorithm can be implemented in hardware. While most programming
languages provide a means for describing sequential processes, hardware
implementations include the need to take advantage of parallel processing
wherever possible. Therefore a notation system is required that can describe both
sequential and parallel steps in an algorithm. One such notation system is the
Algorithmic State Machine or ASM, which can be represented as a directed
graph. With this notation system algorithms are defined by diagrams using three
types of vertex, more commonly called boxes:

1. state box: labelled rectangle, possibly containing "assignment

(C) A.H.Dixon page..17

statemtents" called register transfer statements, or variables that
define external output statements. Each register transfer statement
defines a task that can be performed in one clock cycle, each variable
defines an output or status bit that is to be enabled for one clock
cycle. There is only one arrow leaving each state box, which can
have multiple arrows entering it.

2. decision box: hexagon, defining one or more boolean control signals;
that is, a boolean function of one or more variables. There is always
one input arrow into a condition box, and two arrows out for each
boolean control signal. Each output arrow is labelled with one of two
logic levels of the associated signal.

3. conditional action box: Oval, containing register transfer
expressions and possibly variables, as described for state boxes. Oval
boxes have one or more arrows coming from a decision box, and one
arrow leaving.

An ASM block consists of a single state box as well as all the decision and
conditional action boxes that can be reached by arrow tracing from the state box
until another state box is encountered. An ASM block defines all the "activity"
that can take place in one clock cycle.

The example on the next page illustrates an ASM diagram for a machine to find
the sum of N numbers. This machine accepts as input a sequence of numbers
beginning with the value of N, the number of numbers to be summed. Each
number is provided only when requested, using an set of interface signal lines:

• rdy: An output by the sum machine when it has completed a task and
is waiting for a new request (via st) to do a new sum.

• data: An input that tells the sum machine when there is valid data on
its input bus. It is also used to start the system.

• ack: An output by the sum machine to indicate that it has
satisfactorily processed the data that was on the input bus and
therefore the value does not need to be maintained any longer on the
bus.

3. CLASSIFICATION OF INPUTS AND OUTPUTS

The inputs and outputs of a "black-box" can be classified according to the role
they will play in the behavior of the circuit:

• Data inputs: set of signal lines that represent the data to be
manipulated by the circuit.

• Control inputs: set of signal lines that select or otherwise affect

(C) A.H.Dixon page..18

ack

rdy
data

out_busin_bus
0

1

01
1

0

N=0

rdy

data

S1

S1

S2

S1

S0

ack, N<-N-1
SUM<-SUM+in-bus

ack
N<-in_bus
SUM<-0

data

rdy

Figure 2-1: ASM Diagram for the Sum Machine

(C) A.H.Dixon page..19

whether a circuit performs its function, and which functions are
performed by multi-functional circuits.

• Data outputs: set of signal lines that represent the result generated by
the circuit.

• Status outputs: Set of signal lines used to odentify or interpret the
current output or state of the system.

For example the 4x1 MUX described previously has 4 data input lines and 2
control inputs that select which data input is delivered to the single data output bit.

As a second example, a 4 bit full adder consists of 8 data input lines (4 per
operand), 4 data output lines, and 1 status output, if the carry-out is interpreted as
an overflow indicator. The carry-in can be interpreted as a third operand, and thus
a data input.

4. DESIGN FROM ASM SPECIFICATIONS

There is a general design strategy based on the information contained in the ASM
specification. This design method leads to a machine architecture consisting of
two principal components:

• A processing component which defines the logic required to provide
the computational requirements and data flow paths necessary for the
machine to perform the task for which it is designed.

• A controller component which manages the order in which the
various components of the processing logic are enabled so that they
can perform their tasks. The controller itself consists of two parts:

• A sequencer which keeps track of which ASM block is
currently being executed by the processing logic and determines
which ASM block will be executed in the next clock cycle.

• A control point selector which generates the necessary control
signal assignments to every control input within the processing
component.

ASM Design Method
1. Construct a black box for the circuit and identify each input and

output and its role as a data carrier, function select, circuit enable,
etc.

2. Formulate an algorithm for the process, expressed in an ASM
diagram.

3. From the ASM identify all register and other memory requirements

(C) A.H.Dixon page..20

inputs
control

select and
external

clk

OUT
DATA

IN
DATA PROCESSOR

SELECTOR
CTL PT

SEQ

status control pts

Figure 4-1: Typical System Architecture from ASM Design

and determine the operational capabilities of each required register.
Express each component by a behavioral description.

4. From the ASM condition boxes determine the combinational
requirements for generating each status bit that controls the
sequencing of the steps of the algorithm. Agaion, define each
component with a behavioral description.

5. Group the Register Transfer Expressions (RTEs) in the ASM to
determine how many different data paths enter or leave each register.
This will determine the steering logic requirements.

6. Construct a structural specification in the form of a logic diagram for
the processor, showing the required register and combinational
components and the data paths between them. For each component,
label the necessary control inputs than must be used to obtain the
functional behavior suggested by the register transfer expressions.

7. From the ASM design the sequencer by constructing a FSM. Each
state of the FSM corresponds to a block of the ASM, and a state
transition arrow is drawn between two states if there is an arrow

(C) A.H.Dixon page..21

connecting the corresponding two ASM blocks. The state transition
arrow of the FSM is labelled by a product of the input literals or
status bits controlling the sequencing in the ASM.

8. From the ASM design the control point selector. For each ASM
block determine all control inputs that must be enabled to perform all
tasks defined within the block. In each case, construct a boolean
function whose variables include the the current state of the
sequencer and any status bits specified by condition boxes within the
block.

The following example illustrates the method for the example ASM given above
to sum N numbers.

5. DATAPATH DESIGN

To determine the register requirements from the ASM, group the RTEs in the
ASM by <destination>; that is all RTEs with the same destination are
grouped together:

• SUM: SUM <- 0, SUM<- SUM + in-bus. This can be
implemented with a parallel load register, which will have one control
input to enable it to load its contents in parallel and one control input
to clear. In the diagram the control inputs will be labelled "ls" and
"cs."

• N: N <- in_bus, N <- N-1. N can be implemented with a
"down" counter that also has a parallel load capability. Again, two
functions means that the package will have two control inputs. ln
will denote the load control input and dn will identify the "decrement"
(i.e., count down) control input.

From the ASM diagram,in addition to the registers SUM, and N, three
combinational components are required; one to add SUM and in-bus, one to
compare N with 0, and one to control the placing of SUM on out_bus. These
packages can be constructed from simpler components or a commercial package
may be available with the desired capabilities.

The identified functional components are organized in a structural description
such as a logic diagram, by connecting them with bus lines to show the required
PROCESSOR (DATAPATH) suggested by the RTEs is given in Figure 4-2 (next
page).

(C) A.H.Dixon page..22

ovfl

c_out

PROCESSOR (DATAPATH)

dn
ln

cls
ls

0c_in
Y X

S
FA

in_bus

out_bus

eq0

N=0

NSUM

Figure 5-1: Processing Component of the SUM Circuit

6. CONTROLLER DESIGN

The controller is divided into two modules: the sequencer, that keeps track of
which ASM block the datapath is performing, and the control point enabler, which
asserts the appropriate control inputs in the datapath depending on the state of the
sequencer, the external control inputs, and the status of the datapath. The black
box diagrams for these components for the example being designed are given in
the diagram on the next page. Each component will be designed separately:

(C) A.H.Dixon page..23

ovfl

c_out

S2

S1

S0

ENABLER
POINT

CTL

ack
rdy
dn
ln
cs
ls

data

SEQ

PROCESSOR (DATAPATH)

dn
ln

cs
ls

0c_in
Y X

S
FA

in_bus

out_bus

eq0

N=0

NSUM

(C) A.H.Dixon page..24

6.1. Sequencer Design

The sequencer is obtained from the ASM diagram by constructing a state
diagram, where each state corresponds to an ASM block:

data

eq0’

eq0

data
S2S1S0

Figure 6-1: State Diagram for the Sequencer of the SUM Circuit

The structural description (logic diagram) can be constructed from this state
diagram using any of the methods (state-transition, 1 D-flip-flop per state, or
multiplexer/register/decoder) described previously.

6.2. Control Point Enabler Design

The control point enabler must determine which control inputs to assert based on
the current ASM block (provided by the sequencer), the external control inputs,
and the status outputs (from the processor).

The control point enabler can be developed from a function table. This table
describes the appropriate control points to enable (i.e., set to logic 1) when in a
particular ASM block (as specified by the values of S0, S1, and S2). This of
course depends on the values of the external control and status inputs data and
eq0.

Alternatively, one can capture the information of the ASM diagram algebraically
by examining which ASM block and which control inputs must be asserted for
each control input to be enabled.

In the example above, the following boolean equations can be derived:
ls = S2*data
cs = S0*data
ln = S0*data
dn = S2*data
rdy = S0 + S2
ack = S0*data + S2*data

(C) A.H.Dixon page..25

6.3. Step Action Sequences

In situations where the same boolean expressions define a number of outputs, it
is more convenient to express these relationships using step action statements. A
step action statement is simply a boolean expression (called the control expression
followed by a list of outputs that are to be asserted when the control expression is
true.

A combinational circuit can be defined by a set of step action statements called a
step action sequence. The above example, expressed as a step action sequence is:

S0+S2: rdy
S2*data: ack, ls, dn
S0*data: ack, cs, ln

Note that each step action statement defines the value of all control point enabler
outputs: {ls,cs,ln,dn,rdy,ack}. Those listed explicitly in a step action
statement are assumed to be given logic 1 and those not listed explicitly are to be
given the value 0 if the control expression is true. Finally, if none of the control
expressions is true then all control outputs are to be assigned the value 0.

Rather than implementing the Conrol Point Enabler with discrete gate
components, programmable logic devices are frequently used.

7. GUIDELINES ON DEFINING ASMs

The formulation of a behavioral description expressed as an ASM is based on
identifying important aspects of the problem from the original description. Since
this may be incomplete, design decisions are often required. The following steps
are a guideline as to what needs to be addressed:

1. Express the solution to the problem algorithmically, using pseudo-
code or a programming language. To obtain the example ASM
above, the following algorithm was used as the starting point:

SUM = 0;
N = GET_INPUT();
WHILE (N > 0)
BEGIN

SUM = SUM + GET_INPUT();
N = N - 1;

END;

2. Translate the algorithm into a sequence of register transfer
statements. This may require expressing some statements of the
original algorithm using more than one register transfer statement if
the required operation cannot be performed in one clock cycle.

(C) A.H.Dixon page..26

3. Group adjacent register transfer statements into a single ASM block
if there are no dependencies between the statements. This step aims
to take advantage of any parallelism that may be present and so
improve the performance of the eventual solution.

4. Introduce control signals to manage the interface between the device
being defined and any external devices with which it must
communicate. In the example a control signal from the external
device (data) is required to intiate action by the device being
designed and to advise it when there is valid data on the input bus,
in_bus. As well the external device requires control signals to
advise it when the device being designed requires input (rdy), and
when it no longer needs the data on in_bus (ack).

The communications interface can often be characterized using a
diagram showing all the required signal lines between the device
under construction and the external device(s) with which it must
communicate. The ASM defined previously was based on the
following communications interface definition:

rdy

ack

data

out_bus

in_bus

MACHINE
SUM

DEVICE
EXTERNAL

(C) A.H.Dixon page..27

