
Lecture 27
July 14

Cache Memory
Direct cache
− Use least significant bits of word address as “ index”

o Other bits are the “tag”
− If the processor requests a word from RAM

o Take its index look in that position in the cache
o Check to see if the tag in the cache matches the tag of the address
o Match: return value from cache (hit)
o No match: go to memory & store in cache (miss)

− In the example (8-bit address, 3 bit index) the cache looks like:

Index Tag Data
000 10101 …………….
001
010
011
…
111

− If Tag||Index is the memory address we want, fetch from Data
o I.e. Memory 10101000 is cached, 11111000 isn’ t

− Memory address with the same index can’t be cached
o Very bad if you have code & data with the same index

− Fully associative cache
o We could use the entire address as the tag & cache words anywhere:

Tag Data
10101 …………….

− Gives a lot more freedom when deciding what to cache
− Problem: if the CPU requests a particular word, how do we decide if/where it is in the

cache?
o It would take too long to search each tag for a match

− Solution: store tags m “associative memory”

o Memory with comparison circuitry added
o Each stored tag is compared to the memory address in parallel

� Each tag has a comparison circuit to do it
o But, the extra circuitry for associative memory is expensive

− Cache replacement
o With fully associative cache, there is more freedom in deciding what o

replace
o Some possible STRAEGIES:

� Least recent used (LRU)
� Random
� FIFO(first-in first-out)

o LRU is the best of these
� but, its difficult to implement
� with each, update a time stamp
� when replacing, find the oldest time stamp

o if used, LRU is approximated
− set –associative code is a cheaper alternative
− start with direct mapped cache

o instead of one tag/data pair per index, create several
o e.g. For each tag allow 4 tags:
o

Index Tag1 Tag2 Tag3 Tag4 Data
000 …………….

o For each read/replacement we only have to check the corresponding
index’s tag

� Doing 4 comparisons is possible
o 2-way or 4-way set associative cache is common in modern architectures

Cache variations:
− instruction/data cache

o some architectures use separate caches for instruction & data reads in a
single cycle

− several levels of cache
o some architectures have different levels of memory cache

� e.g. 64KB of L1 cache that reads in 1 cycle 1MB of L2 cache that
reads in 2 cycles

CPU <=> L1 <=> L2 <=> memory

