Lecture 27
July 14

Cache Memory
Direct cache
— Useleast significant bits of word address as “index”
o0 Other bits are the “tag”
— If the processor requests aword from RAM
o Takeitsindex look inthat position in the cache
0 Check to seeif the tag in the cache matches the tag of the address
0 Match: return value from cache (hit)
o No match: go to memory & store in cache (miss)
— Inthe example (8-bit address, 3 hit index) the cache looks like:

Index Tag Data

000 10101

001

010

011

111

- If Tag||Index is the memory address we want, fetch from Data
o0 |.e. Memory 10101000 is cached, 11111000 isn’'t
— Memory address with the same index can’'t be cached
o0 Very bad if you have code & data with the same index
— Fully associative cache
0 We could use the entire address as the tag & cache words anywhere:

Tag Data

10100

— Gives alot more freedom when deciding what to cache
— Problem: if the CPU requests a particular word, how do we decide if/whereit isin the
cache?
o It would taketoo long to search each tag for a match

— Solution: store tags m “associative memory”

0 Memory with comparison circuitry added
0 Each stored tag is compared to the memory address in parallel
» Each tag has a comparison circuit to do it
0 But, the extracircuitry for associative memory is expensive
— Cache replacement
o With fully associative cache, there is more freedom in deciding what o
replace
0 Some possible STRAEGIES.
» Least recent used (LRU)
= Random
= HFO(first-in first-out)
0 LRU isthe best of these
= but, itsdifficult to implement
= with each, update atime stamp
= when replacing, find the oldest time stamp
o if used, LRU is approximated
— set —associative code is a cheaper alternative
— start with direct mapped cache
0 instead of one tag/data pair per index, create several
0 e.g. For eachtagallow 4 tags:
0

I ndex Tagl Tag2 Tag3 Tag4 Data

oo |

o For each read/replacement we only have to check the corresponding
index’ s tag
= Doing 4 comparisonsis possible
0 2-way or 4-way set associative cache is common in modern architectures

Cache variations:
— instruction/data cache

0 some architectures use separate caches for instruction & datareadsin a

single cycle

— several levels of cache

0 some architectures have different levels of memory cache

= e.g. 64KB of L1 cachethat readsin 1 cycle IMB of L2 cache that
readsin 2 cycles

CPU <=> L1 <=> L2 <=> memory

