
Lecture 24
July 7

ISA’s
− Operand addressing

o How many operands?
− Address architecture

o What type of operands are allowed?

Addressing Modes
− How are operands interpreted?
− Implied mode

o Node address field given
o Operand is specified as port of the definition of the opcode
o E.g. Stack0based operations

− Immediate mode
o The operand itself is specified as part of the instruction
o E.g. ADD#7 ACC�ACC+7

− Register mode
o The address specifies a register

� Use value from that register
o E.g. ADD R7 ACC�ACC+R7

− Register-indirect mode
o The register specifies a memory address.
o E.g. ADD(R7) ACC�ACC+M[R7]
o LD R0, (R7) R0 M0[R7]

− Direct addressing mode
o The operand specifies a memory address
o E.g. ADD 7 ACC �ACC+M[7]

− Indirect addressing mode
o The address is a memory address

� Use the value there
� As a memory address for the operand

o E.g. ADD[7] ACC�ACC+M[M[7]]
− Relative addressing

o Gives a memory address relative to the PC
o E.g. ADD#7 ACC �M[PC+7]

− Indexed addressing
o Gives a memory address, relative to an index register
o e.g. ADD7(X) ACC�ACC+M[X+7]
o the (X) could be a special-purpose indexing-register or a general purpose

register
− many other addressing mode are possible



RISC and CSIS
− When an instruction set arch. Is defined, we have to chose the operand accessibility,

modes, reg. file size… etc.
− CISC and RISC represent two types of ISA
− CSIS:

o “complex ISA” (not pipelined)
o instructions can take more than one cycle
o lots of addressing modes
o most instructions can do memory access (memory-memory or memory-

register)
o instructions can have different lengths

� 1 word, 2 words, etc.
� usually depends on addressing mode

− RISC
o “reduced ISA”
o instructions all take a single cycle to complete
o usually pipelined
o few addressing modes
o few instructions can do memory access (load-store)
o all the instructions are the same size

− Real processors range between pure RISC and pure CSIC?
o Lots of choice for assembly programmers

� Many addressing modes
� Lots of instructions that do a lot

Why RISC?
− Easier fro compliers to work with

o Smaller instructions are easier to recognize
− Simpler circuitry to complement

o Cheaper to produce
− Can have a faster clock

o Simpler circuit�shorter propagation delay
− Pipeline

o Faster
− Assembly programs in RISC tend to be longer
− RISC architectures usually execute code for a given task faster


