
Lecture 23
July 04

Instructions Set Arch
− Register set
− Other choices/assembly instructions look like?
Operand Addressing
− How many operands can an instruction have?
− Three-address instructions

o An instruction can specify two sources & one destination address
o E.g. ADD A,B,C M[A] �M[B] + M[C]

− Two-address instructions
o Two operands specified

� Specified a source and a sources/destination
• I.e. One sources is implicitly used as the destination

� E.g.
� MOVE R1, A R1 � M[A]
� ADD R1, R2 R1�R1+R2

One-address instructions
− The source/destination is specified implicitly

o Usually an “accumulator”
o E.g.
o LD A ACC � M[A]
o ADD B ACC�ACC +M[B]
o ST R2 R2 �ACC

− Zero-address instructions
o Operands are all specified implicitly

� The top elements of a stack
o E.g. ADD: take the top 2 stack elements add them & push the result

� TOS� TOS +TOS-1

o Generally need load/store operations with one operand
� E.g.
� LD A TOS�M[A]
� ST B M[B] �TOS

Address Architecture
− The type of operands used might be restricted
− Memory to memory architecture

o no general-purpose registers
o all operands in memory
o e.g.

� ADD A,B,C M[A] �M[B]
� ADD D,E M[D] � M[D] + M[E]

o Problem: takes a long time to do memory operations with each
instructions

Register-to-register (or load store) architecture
− No memory access in calculation instructions

o Only registers
− Only load & store operations can access memory.
− Need a large register file to hold values
− E.G.

o LD R2, A R2 �M[A]
o ADD R8, R0 R31 R8 �R0+R31
o ST B, R4 M[B] � R4

Register memory architectures
− Allows one memory access per instruction
− E.G.

o ADD R1, A R1 � R1+M[A]
o ADD R0, R1, A R0 � R1 + M[A]

Single accumulator architecture
− Single register: ACC
− Generally single operand instructions
− The other operands must come from memory

o E.g.
o ADD A ACC � ACC+M[A]
o ST B M[B] �ACC

Stack architecture
− All operands access the stack

o Except load/store
− Stack could be implemented with register or memory

Addressing Modes
− The “addressing mode of an instruction determines how the operand is interpreted
− The address that is used after translation is the “effective address”
− E.g. If the programmer specifies

o “ load 184” is it
R184 or M[184] or 184?

o ….

