Lecture #3 May 9 library ieee; use ieee.std_logic_1164.all; entity and_gate is port(a, b : in std_logic; c : out std_logic); end and_gate; - Std_logic type

- Used to represent a one bit signal
- o ... or current on a signle connection
- o values:
 - '0' 0—false
 - '1' 1—true
 - 'X' error | unknown | impossible
 - 'U' uninitialised
- we have now defined this block:

a L	 and_gate	c
D		

- entity descriptions
 - o we still need to indicate that the entity does
 - o an "architecture" describes how 'its' constructed / how it hbehaves
- there are two ways to give an architecture:
 - o structural: how it is built from smaller pieces
 - o behavioural: how does it behave? (don't worry about construction)
- a behavioural architecture for the and_gate

```
architectureal behave of and_gate is
begin
and_process: process (a,b)
begin
c<= a and b after 2 ns;
end process;
end behave;
```

- give a description named "behave" of the and_gate
- it contains one "process" named "and_process"
 - o a process is a (partial) description of the behaviour
 - o this process depends on signals a,b

- rerun the process whenever a or b changes
- separate process are run concurrently (at the same time)
- the process contains one "sequential statement"
 - o the statements are executed one-at-a-time
- this statement modifies the signal c
 - the <= operator is used to assign values to signals
 - "and" is defined by the IEEE library
 - o it takes 2ns (nanoseconds) for the change to be visible
 - represents the propagation delay of the circuit
 - the "after.." part is optional