CMPT 125, Spring 2017, Surrey Practice Midterm Answer Key Page 1 of 6

CMPT 125: Practice Midterm Answer Key

Linked Lists

Suppose you have a singly-linked list whose nodes are defined like this:

struct Node {
int val;
Node* next;

}i

There’s a global variable H of type Node* that should always point to the first node of
the list. If the list is empty, then H == nullptr. The next pointer of the last node
on the list has the value nullptr.

The following questions ask you to write functions that process this singly-linked list.
After each function is finished, H should either be nullptr (if the list is empty), or
pointing to the first node of the list. You can write helper functions if necessary, but
don't use any other data structures, such as arrays or vectors, in your answer.

a) Write two versions of a function called pop_tail () that deletes the last node on
the list and returns its value. If the list is empty, use cmpt : : error to cause an error.
The first version of pop tail () should use aloop, and the second version should

use recursion.

int pop tail loop() {

if (H == nullptr) cmpt::error("error!");

if (H->next == nullptr) { // list has 1 node
int result = H->val;
delete H;

H = nullptr;
return result;

} else { // list has 2 or more nodes
Node* p = H;

while (p->next->next != nullptr)
p = p->next;
// p->next->next == nullptr

int result = p->next->val;
delete p->next;
p—->next = null;
return result;

Instructor: Toby Donaldson

CMPT 125, Spring 2017, Surrey Practice Midterm Answer Key Page 2 of 6

L1777 777777777777777777777777777777777777777
// Pre-condition: both p and p->next are
// not nullptr
int pop tail rec(Node* p) {
if (p->next->next == nullptr) {
int result = p->next->val;
delete p->next;
p->next = null;
return result;
} else
return pop tail rec(p->next);

int pop tail rec() {

if (H == nullptr) cmpt::error("error!");
if (H->next == nullptr) { // list has 1 node
int result = H->val;

delete H;

H = nullptr;
return result;
} else { // list has 2 or more nodes
return pop tail rec(H);
}
}

b) Write a function called get (n) that returns the value of the nth node. The index of
the first node is 0, so get (0) returns the value of the first node, get (1) returns the
value of the second node, and so on.

If n <0, or n >= (the number of nodes on the list), then cause an error with
cmpt: :error.

int get loop(int i) {
if (i < 0) cmpt::error("error!");
Node* p = H;
while (!(p == nullptr || i == 0)) {
p = p->next;
i——;

}

// p == nullptr || i ==
if (p == nullptr) cmpt::error("error!");
return p->val;

Instructor: Toby Donaldson

CMPT 125, Spring 2017, Surrey Practice Midterm Answer Key Page 3 of 6

L1111 77 777777777 7777777777777777777777777777

int get rec(int i, Node* p) {
if (i < 0 || p == nullptr)
cmpt::error("error");
if (1 == 0) {
return p->val;
} else {
return get rec(i - 1, p->next);
¥
}

int get rec(int i) {
return get rec(i, H);

}

Instructor: Toby Donaldson

CMPT 125, Spring 2017, Surrey Practice Midterm Answer Key Page 4 of 6

O-notation

a) Give the mathematical definition of "f(n) is O(g(n))".
If f(n) is O(g(n)), then there exists ¢ > 0 and no > 1 such that
f(n) <= cg(n), n>=n,
b) Using the definition of O-notation, prove that n? is O(2").
To show n? is O(2"), we must find ¢ > 0 and n, > 1 such that
n’<=c2", forn>= no

By creating a table of values you can see that, eventually, 2" always greater than n*

So, if we set ¢ = 1 and n, = 4, then inequality (1) above is satisfied, and so n* is O(2").
c) Prove or disprove: 500 is O(1).
This is true: 500 is O(1). To prove this, you must find c > 0 and no >= 1 such that

500 <= c*1, forn >= ny
Setting ¢ = 500 and n, = 1 satisfies the inequality, thus proving 500 is O(1).
d) Suppose algorithm A does O(n?) primitive operations when run on an input of size n.
Experiments show that for n = 1000, it takes about 2 seconds to run. About how many
seconds would you expect to wait for A to process an input of size n = 10,000?
10,000 is 100 times bigger than 1000 and, since A is O(n?), if n is replaced by 10n, then
it does about (10n)*=100n* primitive operations, i.e. 100 times more primitive

operations. So you would expect A to take about 100*2 = 200 seconds on an input of
size n = 10,000.

Instructor: Toby Donaldson

CMPT 125, Spring 2017, Surrey Practice Midterm Answer Key Page 5 of 6

e) Suppose f(n) is O(g(n)). Is it also possible that g(n) is O(f(n))? If so, give examples
of functions for f and g that make it true. If not, explain why it's impossible.

Answer yes: e.g. f(n) = 2n, g(n) =n

Instructor: Toby Donaldson

CMPT 125, Spring 2017, Surrey Practice Midterm Answer Key Page 6 of 6

Stacks and ADTs

a) Define abstract data type (ADT).

An ADT is a mathematical model of data structure that specifies the type of the data
stored and the operations on that type. The exact implementation of the type, and the
exact details of the algorithms, are not usually given. The ADT only specifies how the
operations and the type behaves.

b) Write an abstract data type Queue for a queue using C++. Include at least 5 basic
functions, and use precise English to write the specifications.

// returns a new, empty queue
Queue make empty()

// adds x as the new back of queue Q
void enqueue(Queue Q, int Xx)

// removes and returns the front element of the queue
// Q; if Q has no elements, then causes an error
int dequeue(Queue Q)

// returns true if, and only if, Q has no items
bool is_empty(Queue Q)

// returns the number of elements in Q
int size(Queue Q)

¢) Show how you can simulate a stack using only one queue. You only need to show
how to implement push and pop in no worse then O(n) time. Don’t use any other arrays,

lists, stacks, etc. in your answer.

Let Q be an initially empty queue as defined in the previous question. Then push and
pop work like this:

push(x):

enqueue(x), then do the following n-1 times (where n is the # of elements in Q):
enqueue(dequeue()).

pop(): dequeue()

Instructor: Toby Donaldson

	CMPT 125: Practice Midterm Answer Key
	Linked Lists
	O-notation
	Stacks and ADTs

