
Priority Queues and Heaps



John Edgar

 Define the ADT priority queue
 Define the partially ordered property
 Define a heap
 Implement a heap using an array
 Implement the heap sort algorithm

2





John Edgar

 Items in a priority queue have a priority

▪ Not necessarily numerical

▪ Could be lowest first or highest first

 The highest priority item is removed first
 Priority queue operations

▪ Insert

▪ Remove in priority queue order

▪ Both operations should be performed in at most 
O(log n) time

4



John Edgar

 Items have to be removed in priority order
▪ This can only be done efficiently if the items are ordered in 

some way
 One option would be to use a balanced binary 

search tree 
▪ Binary search trees are fully ordered and insertion and 

removal can be implemented in O(log n) time
▪ Some operations (e.g. removal) are complex

▪ Although operations are O(logn) they require quite a lot of 
structural overhead

 There is a much simpler binary tree solution 

5



A complete, partially ordered, binary tree



 A tree is a connected graph made up of nodes 
and edges

▪ With exactly one less edge than the number of nodes

 A tree has a root

▪ The first node in the tree

 A tree has leaves

▪ Nodes that have no children

 A binary tree is a tree with at most two children 
per node

John Edgar 7



 A heap is binary tree with two properties
 Heaps are complete

▪ All levels, except the bottom, must be completely filled in

▪ The leaves on the bottom level are as far to the left as 
possible

 Heaps are partially ordered

▪ For a max heap – the value of a node is at least as large as 
its children’s values

▪ For a min heap – the value of a node is no greater than its 
children’s values

John Edgar 8



John Edgar 9

complete binary trees

incomplete binary trees



John Edgar 10

98

4186

13 65

9 10

32 29

44 23 21 17

Heaps are not fully ordered, an in order traversal would result in

9, 13, 10, 86, 44, 65, 23, 98, 21, 32, 17, 41, 29



John Edgar

 A heap can be used to implement a priority queue
 The item at the top of the heap must always be the 

highest priority value

▪ Because of the partial ordering property 

 Implement priority queue operations:

▪ Insertions – insert an item into a heap 

▪ Removal – remove and return the heap’s root

▪ For both operations preserve the heap property

11



Using an Array to Implement a Heap



John Edgar

 Heaps can be implemented 
using arrays

 There is a natural method of 
indexing tree nodes

▪ Index nodes from top to bottom 
and left to right 

▪ Because heaps are complete
binary trees there can be no 
gaps in the array

13

0

1 2

3 4 5 6



John Edgar

 It will be necessary to find the index of the 
parents of a node

▪ Or the children of a node

 The array is indexed from 0 to n - 1

▪ Each level's nodes are indexed from:

▪ 2level - 1 to 2level+1 - 2 (where the root is level 0)

▪ The children of a node i, are the array elements 
indexed at 2i + 1 and 2i + 2

▪ The parent of a node i, is the array element indexed at 
(i - 1) / 2

14



John Edgar

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 98 86 41 13 65 32 29 9 10 44 23 21 17

15

98

4186

13 65

9 10

32 29

44 23 21 17

Heap

The heap is represented by an array

0

1 2

3 54 6

7 8 9 10 11 12

indexes in blue



John Edgar

 On insertion the heap properties have to be 
maintained, remember that

▪ A heap is a complete binary tree and

▪ A partially ordered binary tree

 There are two general strategies that could be used 
to maintain the heap properties

▪ Make sure that the tree is complete and then fix the 
ordering or

▪ Make sure the ordering is correct first

▪ Which is better?

16



John Edgar

 The insertion algorithm first ensures that the tree is 
complete

▪ Make the new item the first available (left-most) leaf on the 
bottom level

▪ i.e. the first free element in the underlying array

 Fix the partial ordering

▪ Compare the new value to its parent

▪ Swap them if the new value is greater than the parent

▪ Repeat until this is not the case

▪ Referred to as bubbling up, or trickling up

17



John Edgar 18

Insert 81

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 98 86 41 13 65 32 29 9 10 44 23 21 17

98

4186

13 65

9 10

32 29

44 23 21 17



John Edgar 19

Insert 81

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 98 86 41 13 65 32 29 9 10 44 23 21 17

98

4186

13 65

9 10

32 29

44 23 21 17

(13-1)/2 = 6

8129

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 98 86 41 13 65 32 29 9 10 44 23 21 17 81

81

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 98 86 41 13 65 32 81 9 10 44 23 21 17 29



index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 98 86 41 13 65 32 81 9 10 44 23 21 17 29

John Edgar 20

Insert 81 98

4186

13 65

9 10

32 29

44 23 21 17

(6-1)/2 = 2

81 is less than 98 
so finished

8129

81

81

41

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 98 86 81 13 65 32 41 9 10 44 23 21 17 29



John Edgar

 Make a temporary copy of the root’s data
 Similarly to the insertion algorithm, first ensure that 

the heap remains complete

▪ Replace the root node with the right-most leaf

▪ i.e. the highest (occupied) index in the array

 Swap the new root with its largest valued child until 
the partially ordered property holds

▪ i.e. bubble down

 Return the root’s data

21



John Edgar

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 98 86 41 13 65 32 29 9 10 44 23 21 17

22

98

4186

13 65

9 10

32 29

44 23 21 17

Remove (root)



John Edgar 23

98

4186

13 65

9 10

32 29

44 23 21 17

replace root with 
right-most leaf

17

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 98 86 41 13 65 32 29 9 10 44 23 21 17

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 17 86 41 13 65 32 29 9 10 44 23 21

Remove (root)



index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 17 86 41 13 65 32 29 9 10 44 23 21

John Edgar

17

24

86

4186

13 65

9 10

32 29

44 23 21

swap with larger child

??

children of root: 2*0+1, 2*0+2 = 1, 2

17

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 86 17 41 13 65 32 29 9 10 44 23 21

Remove (root)



index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 86 17 41 13 65 32 29 9 10 44 23 21

John Edgar

41

86

17

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 86 65 41 13 17 32 29 9 10 44 23 21

25

65

13 65

9 10

32 29

44 23 21

children of 1: 2*1+1, 2*1+2 = 3, 4

17

? ?

swap with larger childRemove (root)



index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 86 65 41 13 17 32 29 9 10 44 23 21

John Edgar

17

41

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 86 65 41 13 44 32 29 9 10 17 23 21

86

26

13

9 10

32 29

44 23 21

children of 4: 2*4+1, 2*4+2 = 9, 10

swap with larger child

17

44

65

??

Remove (root)



John Edgar

 Helper functions are usually written for preserving 
the heap property

▪ bubbleUp ensures that the heap property is preserved from 
the start node up to the root

▪ bubbleDown ensures that the heap property is preserved 
from the start node down to the leaves

 These functions may be implemented recursively or 
iteratively

27



John Edgar

void bubbleUp(int i){

int parent = (i – 1) / 2;

if (i > 0 && arr[i] > arr[parent]){

int temp = arr[i];

arr[i] = arr[parent];

arr[parent] = temp;

bubbleUp(parent);

}

// no else – implicit base case
}

28



John Edgar

void insert(int x){

arr[size] = x;

bubbleUp(size);

size++;
}

29



John Edgar

 Both insertion and removal into a heap involve at 
most height swaps

▪ For insertion at most height comparisons
▪ To bubble up the array

▪ For removal at most height * 2 comparisons
▪ To bubble down the array (have to compare two children)

 Height of a complete binary tree is log2(n)

▪ Both insertion and removal are therefore O(logn)

30





John Edgar

 Heaps can be used to sort data

▪ Observation 1: Removal of a node from a heap can be 
performed in O(logn) time

▪ Observation 2: Nodes are removed in order

▪ Conclusion: Removing all of the nodes one by one would 
result in sorted output

▪ Analysis: Removal of all the nodes from a heap is a 
O(n*logn) operation

32



John Edgar

 A heap can be used to return sorted data

▪ In O(n*logn) time

 However, we can’t assume that the data to be 
sorted just happens to be in a heap!
▪ Aha! But we can put it in a heap.

▪ Inserting an item into a heap is a O(logn) operation so 
inserting n items is O(n*logn) 

 But we can do better than just repeatedly calling the 
insertion algorithm 

33



John Edgar

 To create a heap from an unordered array repeatedly 
call bubbleDown

▪ Any subtree in a heap is itself a heap

▪ Call bubbleDown on elements in the upper ½ of the array 

▪ Start with index n/2 and work up to index 0

▪ i.e. from the last non-leaf node to the root

 bubbleDown does not need to be called on the lower half 
of the array (the leaves) 

▪ Since bubbleDown restores the partial ordering from any given 
node down to the leaves

34



John Edgar 35

89

2329

36 48

27 70

94 13

76 37 42 58

Assume unsorted input is contained in 
an array as shown here (indexed from 
top to bottom and left to right)

0

1
2

3 54 6

7 8 9 10 11 12



John Edgar 36

89

2329

36 48

27 70

94 13

76 37 42 58

0

1
2

3 54 6

7 8 9 10 11 12

94

42 58

n = 12, (n-1)/2 = 5

bubbleDown(5)



94

42 58

John Edgar 37

89

2329

36 48

27 70

13

76 37

0

1
2

3 54 6

7 8 9 10 11 12

bubbleDown(4)

76

48 37

n = 12, (n-1)/2 = 5

bubbleDown(5)



John Edgar

76

48 37

94

42 58

38

89

2329

36

27 70

13

0

1
2

3 54 6

7 8 9 10 11 12

70

27 36

bubbleDown(3)

bubbleDown(4)

n = 12, (n-1)/2 = 5

bubbleDown(5)



John Edgar

70

27 36

76

48 37

94

42 58

39

89

2329

13

0

1
2

3 54 6

7 8 9 10 11 12

bubbleDown(2)

94

13

23

2358

bubbleDown(3)

bubbleDown(4)

n = 12, (n-1)/2 = 5

bubbleDown(5)



John Edgar

58

42

94

13

23

70

27 36

76

48 37

40

89

29

13

0

1
2

3 54 6

7 8 9 10 11 12
29

76

bubbleDown(1)

2948
bubbleDown(2)

bubbleDown(3)

bubbleDown(4)

n = 12, (n-1)/2 = 5

bubbleDown(5)



John Edgar

3729

76

48 58

42

94

13

23

70

27 36

41

89

13

0

1
2

3 54 6

7 8 9 10 11 12bubbleDown(0)

94

89

bubbleDown(1)

bubbleDown(2)

bubbleDown(3)

bubbleDown(4)

n = 12, (n-1)/2 = 5

bubbleDown(5)



John Edgar

 bubbleDown is called on half the array

▪ The cost for bubbleDown is O(height)

▪ It would appear that heapify cost is O(n*logn)

 In fact the cost is O(n)
 The analysis is complex but

▪ bubbleDown is only called on ½n nodes

▪ and mostly on sub-trees

42



John Edgar

 Heapify the array
 Repeatedly remove the root

▪ After each removal swap the root with the last element in 
the tree

▪ The array is divided into a heap part and a sorted part

 At the end of the sort the array will be sorted in 
reverse order

43



John Edgar

 The algorithm runs in O(n*logn) time

▪ Considerably more efficient than selection sort 
and insertion sort

▪ The same (O) efficiency as MergeSort and 
QuickSort

 The sort can be carried out in-place

▪ That is, it does not require that a copy of the array 
to be made

44


