Graphs

CMPT 225
Objectives

- Understand graph terminology
- Implement graphs using
 - Adjacency lists and
 - Adjacency matrices
- Perform graph searches
 - Depth first search
 - Breadth first search
- Perform shortest-path algorithms
 - Disjkstra’s algorithm
 - A* algorithm
Graph Theory and Euler

- Graph theory is often considered to have been born with Leonhard Euler
 - In 1736 he solved the *Konigsberg bridge problem*
- Konigsberg was a city in Eastern Prussia
 - Renamed Kaliningrad when East Prussia was divided between Poland and Russia in 1945
 - Konigsberg had seven bridges in its centre
 - The inhabitants of Konigsberg liked to see if it was possible to walk across each bridge just once
 - And then return to where they started
 - Euler proved that it was impossible to do this, as part of this proof he represented the problem as a graph
Konigsberg Graph
Konigsberg
Multigraphs

- The Konigsberg graph is an example of a *multigraph*
- A multigraph has multiple edges between the same pair of vertices
- In this case the edges represent bridges
Graph Uses

- Graphs are used as representations of many different types of problems
 - Network configuration
 - Airline flight booking
 - Pathfinding algorithms
 - Database dependencies
 - Task scheduling
 - Critical path analysis
 - ...
A graph consists of two sets
- A set V of vertices (or nodes) and
- A set E of edges that connect vertices
- $|V|$ is the size of V, $|E|$ the size of E

Two vertices may be connected by a path
- A sequence of edges that begins at one vertex and ends at the other
 - A *simple path* does not pass through the same vertex more than once
 - A *cycle* is a path that starts and ends at the same vertex
If a graph has v vertices, how many edges does it have?

- If every vertex is connected to every other vertex, and we count each direction as two edges
 - $v^2 - v$

- If the graph is a tree
 - $v - 1$

- Minimum number of edges
 - 0
A *connected* graph is one where every pair of distinct vertices has a *path* between them.

A *complete* graph is one where every pair of vertices has an *edge* between them.

A graph cannot have multiple edges between the same pair of vertices.

A graph cannot have *self edges*, an edge from and to the same vertex.
In a *directed graph* (or digraph) each edge has a direction and is called a directed edge.

- A directed edge can only be traveled in one direction.
- A pair of vertices in a digraph may have two edges between them, one in each direction.
In a weighted graph each edge is assigned a weight
- Edges are labeled with their weights
- Each edge’s weight represents the cost to travel along that edge
 - The cost could be distance, time, money or some other measure
 - The cost depends on the underlying problem
Basic Graph Operations

- Create an empty graph
- Test to see if a graph is empty
- Determine the number of vertices in a graph
- Determine the number of edges in a graph
- Determine if an edge exists between two vertices
 - and in a weighted graph determine its weight
- Insert a vertex
 - each vertex is assumed to have a distinct search key
- Delete a vertex, and its associated edges
- Delete an edge
- Return a vertex with a given key
Graph Implementation

- There are two common implementations of graphs
 - Both implementations require a list of all vertices in the set of vertices, \(V \)
 - The implementations differ in how edges are recorded

- Adjacency matrices
 - Provide fast lookup of individual edges
 - But waste space for sparse graphs

- Adjacency lists
 - Are more space efficient for sparse graphs
 - Can efficiently find all the neighbours of a vertex
Adjacency Matrix

- The edges are recorded in an $|V| \times |V|$ matrix.
- In an unweighted graph entries in the matrix are:
 - 1 when there is an edge between vertices or
 - 0 when there is no edge between vertices.
- In a weighted graph entries are either:
 - The edge weight if there is an edge between vertices
 - Infinity when there is no edge between vertices.
- Adjacency matrix performance:
 - Looking up an edge requires $O(1)$ time.
 - Finding all neighbours of a vertex requires $O(|V|)$ time.
 - The matrix requires $|V|^2$ space.
Adjacency Matrix Examples

Line of symmetry

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>∞</td>
<td>1</td>
<td>∞</td>
<td>3</td>
<td>∞</td>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>B</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>2</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td>∞</td>
<td>2</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>8</td>
<td>∞</td>
</tr>
<tr>
<td>G</td>
<td>∞</td>
<td>2</td>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
The edges are recorded in an array $|V|$ of linked lists.

In an unweighted graph a list at index i records the keys of the vertices adjacent to vertex i.

In a weighted graph a list at index i contains pairs:
- Which record vertex keys (of vertices adjacent to i)
- And their associated edge weights.

Adjacency List Performance
- Looking up an edge requires time proportional to the average number of edges.
- Finding all vertices adjacent to a given vertex also takes time proportional to the average number of edges.
- The list requires $O(|E|)$ space.
Adjacency List Examples

Graph 1:
- A connected to B, C, D, E, F, G
- B connected to A, C, E, G
- C connected to A, E, G
- D connected to A
- E connected to B, C, G
- F connected to A, G
- G connected to B, C, E, F

Graph 2:
- A connected to B (1), D (3), F (5)
- B connected to E (2)
- C connected to A (5), B (1)
- D connected to A (1)
- E connected to C (2), G (3)
- F connected to G (8)
- G connected to B (2), C (4)
Graph Traversals

- A graph traversal algorithm visits all of the vertices that can be reached
 - If the graph is not connected some of the vertices will not be visited
 - Therefore a graph traversal algorithm can be used to see if a graph is connected
- Vertices should be marked as *visited*
 - Otherwise, a traversal will go into an infinite loop if the graph contains a cycle
Breadth First Search

- After visiting a vertex, v, visit every vertex adjacent to v before moving on.

- Use a queue to store nodes
 - Queues are FIFO

- BFS:
 - visit and insert start
 - while (q not empty)
 - remove node from q and make it current
 - visit and insert the unvisited nodes adjacent to current
Breadth First Search Example

queue	visited
A | A
B | B
F | F
G | G
C | C
H | H
I | I
J | J
D | D
K | K
E | E
Depth First Search

- Visit a vertex, \(v \), move from \(v \) as deeply as possible
- Use a stack to store nodes
 - Stacks are LIFO
- DFS:
 - visit and push start
 - while (s not empty)
 - peek at node, \(nd \), at top of \(s \)
 - if \(nd \) has an unvisited neighbour
 - visit it and push it onto \(s \)
 - else pop \(nd \) from \(s \)
Depth First Search Example

stack: JK
visited: A B C D E F G H I J K
What is the least cost path from one vertex to another?
- Referred to as the shortest path between vertices
- For weighted graphs this is the path that has the smallest sum of its edge weights

Dijkstra’s algorithm finds the shortest path between one vertex and all other vertices
- The algorithm is named after its discoverer, Edgser Dijkstra

The shortest path between B and G is: B–D–E–F–G and not B–G (or B–A–E–F–G)