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 Understand graph terminology
 Implement graphs using

▪ Adjacency lists and

▪ Adjacency matrices

 Perform graph searches

▪ Depth first search

▪ Breadth first search

 Perform shortest-path algorithms

▪ Disjkstra’s algorithm

▪ A* algorithm

2



John Edgar

 Graph theory is often considered to have been born 
with Leonhard Euler

▪ In 1736 he solved the Konigsberg bridge problem

 Konigsberg was a city in Eastern Prussia

▪ Renamed Kalinigrad when East Prussia was divided between 
Poland and Russia in 1945

▪ Konigsberg had seven bridges in its centre

▪ The inhabitants of Konigsberg liked to see if it was possible to walk 
across each bridge just once

▪ And then return to where they started

▪ Euler proved that it was impossible to do this, as part of this 
proof he represented the problem as a graph
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 The Konigsberg 
graph is an 
example of a 
multigraph

 A multigraph has 
multiple edges 
between the same 
pair of vertices

 In this case the 
edges represent 
bridges
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 Graphs are used as representations of many 
different types of problems

▪ Network configuration

▪ Airline flight booking

▪ Pathfinding algorithms

▪ Database dependencies

▪ Task scheduling

▪ Critical path analysis

▪ …
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 A graph consists of two sets

▪ A set V of vertices (or nodes) and

▪ A set E of edges that connect vertices

▪ V is the size of V, E the size of E

 Two vertices may be connected by a path

▪ A sequence of edges that begins at one vertex and ends at 
the other
▪ A simple path does not pass through the same vertex more than 

once

▪ A cycle is a path that starts and ends at the same vertex
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 If a graph has v vertices, how many edges 
does it have?

▪ If every vertex is connected to every other vertex, 
and we count each direction as two edges

▪ v2 – v

▪ If the graph is a tree

▪ v – 1

▪ Minimum number of edges

▪ 0
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 A connected graph is one 
where every pair of distinct 
vertices has a path between 
them

 A complete graph is one 
where every pair of vertices 
has an edge between them

 A graph cannot have multiple 
edges between the same pair 
of vertices

 A graph cannot have self 
edges, an edge from and to 
the same vertex
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 In a directed graph (or 
digraph) each edge has a 
direction and is called a 
directed edge

 A directed edge can only be 
traveled in one direction

 A pair of vertices in a 
digraph may have two 
edges between them, one 
in each direction
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 In a weighted graph each 
edge is assigned a weight
▪ Edges are labeled with their 

weights

 Each edge’s weight 
represents the cost to travel 
along that edge
▪ The cost could be distance, 

time, money or some other 
measure

▪ The cost depends on the 
underlying problem
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 Create an empty graph
 Test to see if a graph is empty
 Determine the number of vertices in a graph
 Determine the number of edges in a graph
 Determine if an edge exists between two vertices

▪ and in a weighted graph determine its weight

 Insert a vertex 
▪ each vertex is assumed to have a distinct search key

 Delete a vertex, and its associated edges
 Delete an edge
 Return a vertex with a given key
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 There are two common implementations of graphs

▪ Both implementations require a list of all vertices in the 
set of vertices, V

▪ The implementations differ in how edges are recorded 

 Adjacency matrices 

▪ Provide fast lookup of individual edges

▪ But waste space for sparse graphs

 Adjacency lists

▪ Are more space efficient for sparse graphs

▪ Can efficiently find all the neighbours of a vertex
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 The edges are recorded in an V * V matrix
 In an unweighted graph entries in the matrix are 

▪ 1 when there is an edge between vertices or

▪ 0 when there is no edge between vertices

 In a weighted graph entries are either

▪ The edge weight if there is an edge between vertices

▪ Infinity when there is no edge between vertices

 Adjacency matrix performance

▪ Looking up an edge requires O(1) time

▪ Finding all neighbours of a vertex requires O(V) time

▪ The matrix requires V2 space
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A B C D E F G

A 0 1 1 1 0 1 0

B 1 0 1 0 1 0 1

C 1 1 0 0 1 0 1

D 1 0 0 0 0 0 0

E 0 1 1 0 0 0 1

F 1 0 0 0 0 0 1

G 0 1 1 0 1 1 0

A B C D E F G

A  1  3  5 

B     2  

C 5 1     

D 1      

E   2    3

F       8

G  2 4    
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 The edges are recorded in an array V of linked lists
 In an unweighted graph a list at index i records the keys of 

the vertices adjacent to vertex i
 In a weighted graph a list at index i contains pairs 

▪ Which record vertex keys (of vertices adjacent to i) 

▪ And their associated edge weights

 Adjacency List Performance
▪ Looking up an edge requires time proportional to the average number 

of edges

▪ Finding all vertices adjacent to a given vertex also takes time 
proportional to the average number of edges

▪ The list requires O(E) space
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 A graph traversal algorithm visits all of the 
vertices that can be reached

▪ If the graph is not connected some of the vertices 
will not be visited

▪ Therefore a graph traversal algorithm can be used 
to see if a graph is connected

 Vertices should be marked as visited

▪ Otherwise, a traversal will go into an infinite loop 
if the graph contains a cycle
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⚫ After visiting a vertex, v,  visit 
every vertex adjacent to v
before moving on

⚫ Use a queue to store nodes
 Queues are FIFO

⚫ BFS:
 visit and insert start

 while (q not empty)

 remove node from q and make it 
current

 visit and insert the unvisited 
nodes adjacent to current

start
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⚫ Visit a vertex, v, move from v as 
deeply as possible

⚫ Use a stack to store nodes
 Stacks are LIFO

⚫ DFS:
 visit and push start

 while (s not empty)

 peek at node, nd,  at top of s

 if nd has an unvisited neighbour
visit it and push it onto s

 else pop nd from s

start

1

2

3
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 What is the least cost path 
from one vertex to another?
▪ Referred to as the shortest path 

between vertices

▪ For weighted graphs this is the 
path that has the smallest sum of 
its edge weights

 Dijkstra’s algorithm finds the 
shortest path between one 
vertex and all other vertices

▪ The algorithm is named after its 
discoverer, Edgser Dijkstra
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 Finds the shortest path to all nodes from the start node
 Performs a modified BFS that accounts for edge weights

▪ Selects the node with the least cost from the start node

▪ In an unweighted graph this reduces to a BFS

 Stores nodes in a priority queue
▪ In a priority queue the node with the least cost is removed first

▪ The queue records the total cost to reach each node from the start 
node

 The cost in the priority queue is updated when necessary
 The shortest path to any node can be found by backtracking

from that node’s entry in a results list
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 A record for each vertex is inserted into a priority queue, 
each record contains

▪ It's search key

▪ The cost to reach the vertex from the start vertex 

▪ The search key of the previous vertex in the path

 These values are initially set as follows

▪ The cost to reach the start vertex is set to zero 

▪ The cost to reach all other vertices is set to infinity and the 
parent vertex is set to the start vertex

▪ Because the cost to reach the start vertex is zero it will be at the 
head of the priority queue
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 Priority queues can be implemented with a heap

▪ It is efficient for removing the highest priority item
▪ In this case the element with the least cost

 Using a heap does have one drawback

▪ Its elements will need to be accessed to update their costs

▪ It is therefore useful to provide an index to its contents

 There are other data structures that can be used 
instead of a heap
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 Until the priority queue is empty

▪ Remove the vertex with the least cost and insert it in a 
results list, making it the current vertex
▪ The results list should be indexed by the search key of the vertices

▪ Search the adjacency list (or matrix) for vertices adjacent 
to the current vertex

▪ For each such vertex, v
▪ Compare the cost to reach v in the priority queue with the cost to 

reach v via the current vertex

▪ If the cost via the current vertex is less then change v’s entry  in the 
priority queue to reflect this new path
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 When the priority queue is empty the results list 
contains all of the shortest paths from the start

 To find a path to a vertex look up the goal vertex in 
the results list

▪ The vertex’s parent vertex represents the previous vertex 
in the path

▪ A complete path can be found by backtracking through all 
the parent vertices to the start vertex 

▪ A vertex’s cost in the results list represents the total cost 
of the shortest path from the start to that vertex
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John Edgar 30

⚫ Shaded squares are 
inaccessible

⚫ Start at square 13

⚫ Moves can only be 
made vertically or 
horizontally and only 
one square at a time

⚫ The cost to reach an 
adjacent square is 
indicated by the width 
of the walls between 
squares (from 1 to 5)
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⚫ Only vertices that can be 
reached are to be 
represented

⚫ Graph is undirected

⚫ The cost to move from 
one square to another 
differs, the graph is 
weighted

⚫ The graph is fairly 
sparse, suggesting that 
the edges should be 
stored in an adjacency 
list
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⚫ Only vertices that can be 
reached are to be 
represented

⚫ Graph is undirected

⚫ As the cost to move 
from one square to 
another differs, the 
graph is weighted

⚫ The graph is fairly 
sparse, suggesting that 
the edges should be 
stored in an adjacency 
list
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⚫ The cost to reach each 
vertex from the start (st) 
is set to infinity

 For vertex v let's call 
this cost c[st][v]

⚫ All nodes are entered in 
a priority queue, in cost 
priority

⚫ The cost to reach the 
start node is set to 0, 
and the priority queue is 
updated

⚫ The results list is shown 
in the sidebar
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13,  0, 13

vertex, cost, parent

07,  1, 13
12,  1, 13
19,  1, 13
14,  2, 13
06,  2, 12
08,  2, 07
18,  2, 12
20,  3, 19
02,  5, 08
09,  5, 08
26,  5, 20
27,  7, 26

10,  9, 09
32,  9, 26

04, 11, 10
28, 10, 27

33, 11, 32
34, 12, 33
22, 13, 28
35, 13, 34
05, 14, 04
11, 14, 10
29, 14, 35
23, 16, 29

⚫ Once the results array is complete 
paths from the start vertex can be 
retrieved 

⚫ Done by looking up the end vertex 
(the vertex to which one is trying to 
find a path) and backtracking 
through parent vertices to the start

⚫ For example to find a path to vertex 
23 backtrack through:

 29, 35, 34, 33, 32, 26, 20, 19, 13

 Note: there should be some 
efficient way to search the results 
array for a vertex
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06,  2, 12
08,  2, 07
18,  2, 12
20,  3, 19
02,  5, 08
09,  5, 08
26,  5, 20
27,  7, 26

10,  9, 09
32,  9, 26

04, 11, 10
28, 10, 27

33, 11, 32
34, 12, 33
22, 13, 28
35, 13, 34
05, 14, 04
11, 14, 10
29, 14, 35
23, 16, 29



John Edgar

 The cost of the algorithm depends on E and V and the data 
structure used to implement the priority queue

 Consider how many operations are performed
 Whenever a vertex is removed we have to find each 

adjacent edge to it
▪ There are V vertices to be removed and

 For each of E edges there it is necessary to
▪ Retrieve the edge weight from the matrix or list

▪ Look up the cost currently recorded in the priority queue for the 
edge's destination vertex
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 Assume a heap is used to implement the priority queue

 Building the heap takes O(V) time
 Removing each vertex takes O(logV) time

▪ For a total of O(V*logV)

 Each of E edges has to be processed once
▪ Looking up (and changing) the current cost of a vertex in a heap takes 

O(V) for an unindexed heap (O(1) if the heap is indexed)

▪ The heap property needs to be preserved after a change for an additional 
cost of O(logV)

▪ The total cost is V + V*logV + E*(V + logV)

▪ Or, O(V*logV + E*V)

▪ If the heap is indexed the cost is O((V + E) *logV)
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 There are two drawbacks with Dijkstra’s algorithm as a 

method of pathfinding

▪ It finds paths from the start vertex to all other vertices, which 

results in wasted effort if only one path is required

▪ It only measures the cost so far, it does not look ahead to judge 

whether or not a path is likely to be a good one

 The A* algorithm addresses both these issues

▪ It returns the path from the start vertex to the target vertex and

▪ Uses an estimate of the remaining cost to reach the target to 

direct its search
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 The A* algorithm is similar to Dijkstra’s algorithm
▪ It performs a modified breadth first search and

▪ Uses a priority queue to select vertices

 The A* algorithm uses a different cost metric, f, 
which is made up of two components
▪ g – the cost to reach the current vertex from the start vertex 

(the same as Dijkstra’s algorithm)

▪ h – an estimate of the cost to reach the goal vertex from the 
current vertex

▪ f = g + h
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 The key to the efficiency of the A* algorithm is the 
accuracy of h

 To find an optimal path h should be admissible

▪ The heuristic should not overestimate the cost of the path to the 
goal

▪ Inadmissible heuristics may result in non-optimal paths

▪ But may be faster than an inaccurate admissible heuristic

▪ For a “good enough” solution it may be useful to use an inadmissible 
heuristic to speed up pathfinding

 If the heuristic is perfect the A* algorithm will find an 
optimal path with no backtracking
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⚫ Edges are unweighted

⚫ The vertices’ numbers 
represent the A* search 
h and g values

⚫ g (red) is the cost to 
reach the vertex from 
the start vertex

⚫ h (black) is the 
estimated cost to reach 
the goal from the 
current vertex

⚫ h has been calculated as 
the straight line cost to 
reach the goal
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⚫ fading a vertex means it 
is taken from the prQ

⚫ remove the root (start) 
from prQ and update 
the cost to reach 
adjacent vertices

⚫ remove the new root 
from prQ – which is 
ordered by f (i.e. h + g)

⚫ repeat until the goal 
vertex is reached

⚫ find the path by 
backtracking through 
the result away
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-2

end
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⚫ in this example the 
heuristic is perfect

⚫ the final g costs at the 
end of the algorithm are 
shown

⚫ the vertices that are 
removed from the prQ
during the algorithm are 
highlighted in red

⚫ note that the vertices 
correspond to an 
optimal path, “extra” 
vertices correspond to 
choices between paths
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