
Graphs

John Edgar

 Understand graph terminology
 Implement graphs using

▪ Adjacency lists and

▪ Adjacency matrices

 Perform graph searches

▪ Depth first search

▪ Breadth first search

 Perform shortest-path algorithms

▪ Disjkstra’s algorithm

▪ A* algorithm

2

John Edgar

 Graph theory is often considered to have been born
with Leonhard Euler

▪ In 1736 he solved the Konigsberg bridge problem

 Konigsberg was a city in Eastern Prussia

▪ Renamed Kalinigrad when East Prussia was divided between
Poland and Russia in 1945

▪ Konigsberg had seven bridges in its centre

▪ The inhabitants of Konigsberg liked to see if it was possible to walk
across each bridge just once

▪ And then return to where they started

▪ Euler proved that it was impossible to do this, as part of this
proof he represented the problem as a graph

3

John Edgar 4

John Edgar 5

John Edgar

 The Konigsberg
graph is an
example of a
multigraph

 A multigraph has
multiple edges
between the same
pair of vertices

 In this case the
edges represent
bridges

6

John Edgar

 Graphs are used as representations of many
different types of problems

▪ Network configuration

▪ Airline flight booking

▪ Pathfinding algorithms

▪ Database dependencies

▪ Task scheduling

▪ Critical path analysis

▪ …

7

John Edgar

 A graph consists of two sets

▪ A set V of vertices (or nodes) and

▪ A set E of edges that connect vertices

▪ V is the size of V, E the size of E

 Two vertices may be connected by a path

▪ A sequence of edges that begins at one vertex and ends at
the other
▪ A simple path does not pass through the same vertex more than

once

▪ A cycle is a path that starts and ends at the same vertex

8

John Edgar

 If a graph has v vertices, how many edges
does it have?

▪ If every vertex is connected to every other vertex,
and we count each direction as two edges

▪ v2 – v

▪ If the graph is a tree

▪ v – 1

▪ Minimum number of edges

▪ 0

9

John Edgar

 A connected graph is one
where every pair of distinct
vertices has a path between
them

 A complete graph is one
where every pair of vertices
has an edge between them

 A graph cannot have multiple
edges between the same pair
of vertices

 A graph cannot have self
edges, an edge from and to
the same vertex

10

connected graph

complete graph

unconnected
graph

and a tree

John Edgar

 In a directed graph (or
digraph) each edge has a
direction and is called a
directed edge

 A directed edge can only be
traveled in one direction

 A pair of vertices in a
digraph may have two
edges between them, one
in each direction

11

directed graph

John Edgar

 In a weighted graph each
edge is assigned a weight
▪ Edges are labeled with their

weights

 Each edge’s weight
represents the cost to travel
along that edge
▪ The cost could be distance,

time, money or some other
measure

▪ The cost depends on the
underlying problem

12

weighted graph

13

2
4

3

1

3

52
2

John Edgar

 Create an empty graph
 Test to see if a graph is empty
 Determine the number of vertices in a graph
 Determine the number of edges in a graph
 Determine if an edge exists between two vertices

▪ and in a weighted graph determine its weight

 Insert a vertex
▪ each vertex is assumed to have a distinct search key

 Delete a vertex, and its associated edges
 Delete an edge
 Return a vertex with a given key

13

John Edgar

 There are two common implementations of graphs

▪ Both implementations require a list of all vertices in the
set of vertices, V

▪ The implementations differ in how edges are recorded

 Adjacency matrices

▪ Provide fast lookup of individual edges

▪ But waste space for sparse graphs

 Adjacency lists

▪ Are more space efficient for sparse graphs

▪ Can efficiently find all the neighbours of a vertex

14

John Edgar

 The edges are recorded in an V * V matrix
 In an unweighted graph entries in the matrix are

▪ 1 when there is an edge between vertices or

▪ 0 when there is no edge between vertices

 In a weighted graph entries are either

▪ The edge weight if there is an edge between vertices

▪ Infinity when there is no edge between vertices

 Adjacency matrix performance

▪ Looking up an edge requires O(1) time

▪ Finding all neighbours of a vertex requires O(V) time

▪ The matrix requires V2 space

15

John Edgar

A B C D E F G

A 0 1 1 1 0 1 0

B 1 0 1 0 1 0 1

C 1 1 0 0 1 0 1

D 1 0 0 0 0 0 0

E 0 1 1 0 0 0 1

F 1 0 0 0 0 0 1

G 0 1 1 0 1 1 0

A B C D E F G

A  1  3  5 

B     2  

C 5 1     

D 1      

E   2    3

F       8

G  2 4    

16

BA C

D E

GF

BA C

D E

GF

4

1

5

8

2

2

5

11

3 2

3
line of

symmetry

John Edgar

 The edges are recorded in an array V of linked lists
 In an unweighted graph a list at index i records the keys of

the vertices adjacent to vertex i
 In a weighted graph a list at index i contains pairs

▪ Which record vertex keys (of vertices adjacent to i)

▪ And their associated edge weights

 Adjacency List Performance
▪ Looking up an edge requires time proportional to the average number

of edges

▪ Finding all vertices adjacent to a given vertex also takes time
proportional to the average number of edges

▪ The list requires O(E) space

17

John Edgar

A

B

C

D

E

F

G

A

B

C

D

E

F

G

18

BA C

D E

GF

BA C

D E

GF

4

1

5

8

2

2

5

11

3 2

3

B C D F

A C E G

A B E G

A

B C G

A G

B C E F

1B 3D 5F

2E

2B 4C

1A

2C 3G

8G

5A 1B

John Edgar

 A graph traversal algorithm visits all of the
vertices that can be reached

▪ If the graph is not connected some of the vertices
will not be visited

▪ Therefore a graph traversal algorithm can be used
to see if a graph is connected

 Vertices should be marked as visited

▪ Otherwise, a traversal will go into an infinite loop
if the graph contains a cycle

19

John Edgar 20

⚫ After visiting a vertex, v, visit
every vertex adjacent to v
before moving on

⚫ Use a queue to store nodes
 Queues are FIFO

⚫ BFS:
 visit and insert start

 while (q not empty)

 remove node from q and make it
current

 visit and insert the unvisited
nodes adjacent to current

start

1

2

3

4

John Edgar 21

B D EA

G

C

K

F

H I J

A
B
F
G
C
H
I
J
D
K
E

queue visited

A
B
F
G
C
H
I
J
D
K
E

John Edgar 22

⚫ Visit a vertex, v, move from v as
deeply as possible

⚫ Use a stack to store nodes
 Stacks are LIFO

⚫ DFS:
 visit and push start

 while (s not empty)

 peek at node, nd, at top of s

 if nd has an unvisited neighbour
visit it and push it onto s

 else pop nd from s

start

1

2

3

John Edgar 23

B D EA

G

C

K

F

H I J

A

J
I

G
H

F

E
D
C
B

K

stack visited

A
B
C
D
E
F
G
H
I
J
K

John Edgar

 What is the least cost path
from one vertex to another?
▪ Referred to as the shortest path

between vertices

▪ For weighted graphs this is the
path that has the smallest sum of
its edge weights

 Dijkstra’s algorithm finds the
shortest path between one
vertex and all other vertices

▪ The algorithm is named after its
discoverer, Edgser Dijkstra

24

The shortest path

between B and G is:

41

3
5

8

2

2

51
1

B

A

C

D

E

G

F

B–D–E–F–G and not

B–G (or B–A–E–F–G)

John Edgar

 Finds the shortest path to all nodes from the start node
 Performs a modified BFS that accounts for edge weights

▪ Selects the node with the least cost from the start node

▪ In an unweighted graph this reduces to a BFS

 Stores nodes in a priority queue
▪ In a priority queue the node with the least cost is removed first

▪ The queue records the total cost to reach each node from the start
node

 The cost in the priority queue is updated when necessary
 The shortest path to any node can be found by backtracking

from that node’s entry in a results list

25

John Edgar

 A record for each vertex is inserted into a priority queue,
each record contains

▪ It's search key

▪ The cost to reach the vertex from the start vertex

▪ The search key of the previous vertex in the path

 These values are initially set as follows

▪ The cost to reach the start vertex is set to zero

▪ The cost to reach all other vertices is set to infinity and the
parent vertex is set to the start vertex

▪ Because the cost to reach the start vertex is zero it will be at the
head of the priority queue

26

John Edgar

 Priority queues can be implemented with a heap

▪ It is efficient for removing the highest priority item
▪ In this case the element with the least cost

 Using a heap does have one drawback

▪ Its elements will need to be accessed to update their costs

▪ It is therefore useful to provide an index to its contents

 There are other data structures that can be used
instead of a heap

27

John Edgar

 Until the priority queue is empty

▪ Remove the vertex with the least cost and insert it in a
results list, making it the current vertex
▪ The results list should be indexed by the search key of the vertices

▪ Search the adjacency list (or matrix) for vertices adjacent
to the current vertex

▪ For each such vertex, v
▪ Compare the cost to reach v in the priority queue with the cost to

reach v via the current vertex

▪ If the cost via the current vertex is less then change v’s entry in the
priority queue to reflect this new path

28

John Edgar

 When the priority queue is empty the results list
contains all of the shortest paths from the start

 To find a path to a vertex look up the goal vertex in
the results list

▪ The vertex’s parent vertex represents the previous vertex
in the path

▪ A complete path can be found by backtracking through all
the parent vertices to the start vertex

▪ A vertex’s cost in the results list represents the total cost
of the shortest path from the start to that vertex

29

00 01 02 03 04 05

06 07 08 09 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

John Edgar 30

⚫ Shaded squares are
inaccessible

⚫ Start at square 13

⚫ Moves can only be
made vertically or
horizontally and only
one square at a time

⚫ The cost to reach an
adjacent square is
indicated by the width
of the walls between
squares (from 1 to 5)

John Edgar

00 01 02 03 04 05

06 07 08 09 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

31

⚫ Only vertices that can be
reached are to be
represented

⚫ Graph is undirected

⚫ The cost to move from
one square to another
differs, the graph is
weighted

⚫ The graph is fairly
sparse, suggesting that
the edges should be
stored in an adjacency
list

02 04 05

06 07 08 09 10 11

12 13 14

18 19 20 22 23

26 28 29

32 33 34 35

27

3

2

2

2 1

2

15

3

54

1

1

1

1

3 4 5

3

12

2 2

2 3 5

5

1 12

2

21

John Edgar 32

⚫ Only vertices that can be
reached are to be
represented

⚫ Graph is undirected

⚫ As the cost to move
from one square to
another differs, the
graph is weighted

⚫ The graph is fairly
sparse, suggesting that
the edges should be
stored in an adjacency
list

02 04 05

06 07 08 09 10 11

12 13 14

18 19 20 22 23

26 28 29

32 33 34 35

27

3

2

2

2 1

2

15

3

54

1

1

1

1

3 4 5

3

12

2 2

2 3 5

5

1 12

2

21

John Edgar 33

⚫ The cost to reach each
vertex from the start (st)
is set to infinity

 For vertex v let's call
this cost c[st][v]

⚫ All nodes are entered in
a priority queue, in cost
priority

⚫ The cost to reach the
start node is set to 0,
and the priority queue is
updated

⚫ The results list is shown
in the sidebar

02 04 05

06 07 08 09 10 11

12 13 14

18 19 20 22 23

26 28 29

32 33 34 35

27

3

2

2

2 1

2

15

3

54

1

1

1

1

3 4 5

3

12

2 2

2 3 5

5

1 12

2

21

  

  

  

  

  

 

 0

 









John Edgar 34

02 04 05

06 07 08 09 10 11

12 13 14

18 19 20 22 23

26 28 29

32 33 34 35

27

3

2

2

2 1

2

15

3

54

1

1

1

1

3 4 5

3

12

2 2

2 3 5

5

1 12

2

21

  

  

  

  

  

 

 0

 









13, 0, 13

vertex, cost, parent

remove root from prQ

07, 1, 13

update cost to adjacent

vertex, v, via removed

vertex, u, if:

c[u][v] + c[st][u] < c[st][v]

1

1

2

1 23 12, 1, 132

2

19, 1, 13

3

14, 2, 13
06, 2, 12
08, 2, 07
18, 2, 12

5

5

John Edgar 35

1

1

2

1 2

2 3

5

52

02 04 05

09 10 1106 07 08

12 13 14

18 19 20 22 23

26 28 29

32 33 34 35

27

3

2

2

2 1

2

15

3

54

1

1

1

1

3 4 5

3

12

2 2

2 3 5

5

1 12

2

21

 

 

 

  

  

0





13, 0, 13

vertex, cost, parent

07, 1, 13
12, 1, 13
19, 1, 13
14, 2, 13
06, 2, 12
08, 2, 07
18, 2, 12
20, 3, 19
02, 5, 08
09, 5, 08
26, 5, 20
27, 7, 26

10, 9, 09
32, 9, 26

04, 11, 10
28, 10, 27

33, 11, 32
34, 12, 33
22, 13, 28
35, 13, 34
05, 14, 04
11, 14, 10
29, 14, 35
23, 16, 29

9

5 10

9

7

11

11

14

12

14

13

15

15

1312

1816

14

John Edgar 36

13, 0, 13

vertex, cost, parent

07, 1, 13
12, 1, 13
19, 1, 13
14, 2, 13
06, 2, 12
08, 2, 07
18, 2, 12
20, 3, 19
02, 5, 08
09, 5, 08
26, 5, 20
27, 7, 26

10, 9, 09
32, 9, 26

04, 11, 10
28, 10, 27

33, 11, 32
34, 12, 33
22, 13, 28
35, 13, 34
05, 14, 04
11, 14, 10
29, 14, 35
23, 16, 29

⚫ Once the results array is complete
paths from the start vertex can be
retrieved

⚫ Done by looking up the end vertex
(the vertex to which one is trying to
find a path) and backtracking
through parent vertices to the start

⚫ For example to find a path to vertex
23 backtrack through:

 29, 35, 34, 33, 32, 26, 20, 19, 13

 Note: there should be some
efficient way to search the results
array for a vertex

John Edgar 37

11 12

14

149

5 10

9

7

11

13

13

16

14

1

1

2

1 2

2 3

5

52

02 04 05

09 10 1106 07 08

12 13 14

18 19 20 22 23

26 28 29

32 33 34 35

27

3

2

2

2 1

2

15

3

54

1

1

1

1

3 4 5

3

12

2 2

2 3 5

5

1 12

2

21

0

13, 0, 13

vertex, cost, parent

07, 1, 13
12, 1, 13
19, 1, 13
14, 2, 13
06, 2, 12
08, 2, 07
18, 2, 12
20, 3, 19
02, 5, 08
09, 5, 08
26, 5, 20
27, 7, 26

10, 9, 09
32, 9, 26

04, 11, 10
28, 10, 27

33, 11, 32
34, 12, 33
22, 13, 28
35, 13, 34
05, 14, 04
11, 14, 10
29, 14, 35
23, 16, 29

John Edgar

 The cost of the algorithm depends on E and V and the data
structure used to implement the priority queue

 Consider how many operations are performed
 Whenever a vertex is removed we have to find each

adjacent edge to it
▪ There are V vertices to be removed and

 For each of E edges there it is necessary to
▪ Retrieve the edge weight from the matrix or list

▪ Look up the cost currently recorded in the priority queue for the
edge's destination vertex

38

John Edgar

 Assume a heap is used to implement the priority queue

 Building the heap takes O(V) time
 Removing each vertex takes O(logV) time

▪ For a total of O(V*logV)

 Each of E edges has to be processed once
▪ Looking up (and changing) the current cost of a vertex in a heap takes

O(V) for an unindexed heap (O(1) if the heap is indexed)

▪ The heap property needs to be preserved after a change for an additional
cost of O(logV)

▪ The total cost is V + V*logV + E*(V + logV)

▪ Or, O(V*logV + E*V)

▪ If the heap is indexed the cost is O((V + E) *logV)

39

John Edgar

 There are two drawbacks with Dijkstra’s algorithm as a

method of pathfinding

▪ It finds paths from the start vertex to all other vertices, which

results in wasted effort if only one path is required

▪ It only measures the cost so far, it does not look ahead to judge

whether or not a path is likely to be a good one

 The A* algorithm addresses both these issues

▪ It returns the path from the start vertex to the target vertex and

▪ Uses an estimate of the remaining cost to reach the target to

direct its search

40

John Edgar

 The A* algorithm is similar to Dijkstra’s algorithm
▪ It performs a modified breadth first search and

▪ Uses a priority queue to select vertices

 The A* algorithm uses a different cost metric, f,
which is made up of two components
▪ g – the cost to reach the current vertex from the start vertex

(the same as Dijkstra’s algorithm)

▪ h – an estimate of the cost to reach the goal vertex from the
current vertex

▪ f = g + h

41

John Edgar

 The key to the efficiency of the A* algorithm is the
accuracy of h

 To find an optimal path h should be admissible

▪ The heuristic should not overestimate the cost of the path to the
goal

▪ Inadmissible heuristics may result in non-optimal paths

▪ But may be faster than an inaccurate admissible heuristic

▪ For a “good enough” solution it may be useful to use an inadmissible
heuristic to speed up pathfinding

 If the heuristic is perfect the A* algorithm will find an
optimal path with no backtracking

42

John Edgar 43

⚫ Edges are unweighted

⚫ The vertices’ numbers
represent the A* search
h and g values

⚫ g (red) is the cost to
reach the vertex from
the start vertex

⚫ h (black) is the
estimated cost to reach
the goal from the
current vertex

⚫ h has been calculated as
the straight line cost to
reach the goal

-1

-6

-7 -6 -5 -4

-4 -3

-3 -2

-6 -4

-5 -4 -3

-2-4 -3

-5 -4 -3 -2

-1

st

end

5

John Edgar 44

⚫ fading a vertex means it
is taken from the prQ

⚫ remove the root (start)
from prQ and update
the cost to reach
adjacent vertices

⚫ remove the new root
from prQ – which is
ordered by f (i.e. h + g)

⚫ repeat until the goal
vertex is reached

⚫ find the path by
backtracking through
the result away

-1

-6

-7 -6 -5 -4

-4 -3

-3 -2

-6 -4

-5 -4 -3

-2-4 -3

-5 -4 -3 -2

-1

st

end

1-6

1-4

1-6

1-4

2-5 2-3

2-5

3-4

2-7

3-6

3-4

4-3

4-5

4-3

5-2

5-4

5-4

5-2

6-1

6-1

6-3

7-0

6-3 7-2

done

John Edgar 45

-2

end

1-8

1-6

1-6

1-6

2-7 2-5

2-5

3-4 4-3

4-5

5-2

5-4

6-1

6-1

6-3

⚫ in this example the
heuristic is perfect

⚫ the final g costs at the
end of the algorithm are
shown

⚫ the vertices that are
removed from the prQ
during the algorithm are
highlighted in red

⚫ note that the vertices
correspond to an
optimal path, “extra”
vertices correspond to
choices between paths

-8

-7 1-8 2-7 -8

-10 -11

-9 -10

st

2-9

st

1-6

1-6

2-5

3-4 4-3 5-2

6-1

1-6

end

