Hash Tables



Objectives

Understand the basic structure of a hash table and its
associated hash function

Understand what makes a good (and a bad) hash function
Understand how to deal with collisions

Open addressing

Separate chaining
Be able to implement a hash table
Understand how occupancy affects the efficiency of
hash tables



Introduction




Problem Examples

What can we do if we want rapid
access to individual data items?

Looking up data for a flight in an air
traffic control system

Looking up the address of someone
making a 911 call

Checking the spelling of words by looking
up each one in a dictionary

In each case speed is very important
But the data does not need to be maintained in order




Possible Solutions

Balanced binary search tree
Lookup and insertion in O(logn) time  spoilers!
Which is relatively fast

Binary search trees also maintain data in order, which
may be not necessary for some problems

Arrays

Allow insertion in constant time, but lookup requires
linear time

But, if we know the index of a data item lookup can be
performed in constant time



Thinking About Arrays

Can we use an array to insert and retrieve
data in constant time?

—as long as we know an item's index
Consider this (very) constrained problem
domain:

A phone company wants to store data about its
customers in Convenientville

The company has approximately 9,000 customers
Convenientville has a single area code (555)



Living in Convenientville

Create an array of size 10,000

Assign customers to array elements using their
(four digit) phone number as the index

Only around 1,000 array elements are wasted

Customer data can be found in constant time
using their phone numbers
Of course this is not a general solution

It relies on having conveniently numbered key
values



A (Poor) General Strategy

In the Convientville example each possible
key value was assigned an array element
With the index being the 4 digit phone number

Therefore the array size is the number of possible
values 10,000 in the example

Not the number of actual values 9,000 in the example
Consider two more examples that use this

same general idea
Canadian phone numbers
Names



Phone Numbers in General

Let's consider storing information about
Canadians given their phone numbers

Between 000-000-000 and 999-999-9999
It's easy to convert phone numbers to
Integers

Just get rid of the "-"s

The keys range between o0 and 9,999,999,999
Use Convenientville scheme to store data

But will this work?



A Really Big Array!

If we use Canadian phone numbers as the index
to an array how big is the array?

9,999,999,999 (ten billion)
That's a really big array!

An estimate of the current population of Canada
1S 35,623,680 source: CIA World Fact Book

That means that we will use around 0.3% of the array
That's a lot of wasted space

And the array may not fit in main memory ...


https://www.cia.gov/library/publications/the-world-factbook/geos/ca.html

What if we had to store data by name? k

We would need to convert strings to "
integer indexes

Here is one way to encode strings as
iIntegers

Assign a value between 1 and 26 to each _
letter
a=1,z=26(regardless of case)

Sum the letter values in the string
Not a very good method ...

"dog"=4+15+7=26

"god" =7 +15+ 4 =26



Finding Unique String Values

Ideally we would like to have a unique integer for
each possible string
The “sum the letters” encoding scheme does not
achieve this
There is a simple method to achieve this goal

As before, assign each letter a value between 1 and 26

Multiply the letter's value by 26/, where i is the
position of the letter in the word:

"dog" = 4*262 + 15%26 + 7%26° = 3,101

"god" =7%262 + 15%26* + 4%26° = 5,126



Afhahgm Vsyu

The proposed system generates a unique integer
for each string
But most strings are not meaningful

Given a string containing ten letters there 1
are 26%° possible combinations of letters 1E
Which gives 141,167,095,653,376 different possible strings

There are around 200,000 words in the English language
It is not practical to create an array large enough

to store all possible strings
Just like the general telephone number problem



SoWhat's The Problem?

In an ideal world we would know which key
values were going to be recorded

The Convenientville example was close to ideal
Most of the time this is not the case

Usually, key values are not known in advance

And, in many cases, the universe of possible key
values is very large (e.g. names)

So it is not practical to reserve space for all
possible key values



A Different Approach

Don't determine the array size by the
maximum possible number of keys

Fix the array size based on the amount of
data to be stored

Map the key value (phone number or name or
some other data) to an array element

We will need to convert the key value to an
integer index using a hash function

This is the basic idea behind hash tables



Hash Tables




Hash Tables

A hash table consists of an array to store data

Data often consists of complex types
Or pointers to such objects

An attribute of the object is designated & '
as the table's key

A hash function maps the key to an index
The key must first be converted to an integer

And mapped to an array index using a function
Often the modulo function



Collisions

A hash function may map two different keys to the
same index why?

Referred to as a collision

Consider mapping phone numbers to an array of size 1,000
where h = phone mod 1,000 | this is not a good hash function ...

Both 604-555-1987 and 512-555-7987 map to the same index
(6,045,551,987 mod 1,000 = 987)

A good hash function can significantly reduce the
number of collisions

It is still necessary to have a policy to deal with any
collisions that may occur



Hash Functions

R € 93ded . RN,

Bieatn’ R 320287540, SHkoxida:

i ol Xbe8f 1c380x xl<i -
w0 DxT7f6baZeDOx« soistue?

s

ecur‘ité keéﬁ 209 72 B4
04592 dDOx 96838060y Hx 15244

S0x 9f f b6eP9Q AERI19248
7%~ ‘wb7cdI2f T 2130581
1 31 495"698‘%9 ..:E .'f L e
. 4 i . db27 aOxed?

x /1490ed
> %) 4~ ~
-*




Hash Functions

A hash function is a function that maps key values to
array indexes

Hash functions are performed in two steps
Map the key value to an integer

Map the integer to a legal array index

Hash functions should have the following properties
Fast
Deterministic

Uniformity



Hash Function Speed

Hash functions should be fast
and easy to calculate

Access to a hash table should be nearly
instantaneous and in constant time

Most common hash functions require a single
division on the representation of the key

Converting the key to a number should also be
able to be performed quickly



Deterministic Hash Functions

A hash function must be deterministic

For a given input it must always return the same value

Otherwise it will not generate the same array index
And the item will not be found in the hash table

Hash functions should therefore not be
determined by

System time

Memory location

Pseudo-random numbers



Scattering Data

A typical hash function usually results in some
collisions

Where two different search keys map to the same index

A perfect hash function avoids collisions entirely
Each search key value maps to a different index

The goalis to reduce the number and effect of
collisions

To achieve this the data should be distributed evenly
over the table



Possible Values

Any set of values stored in a hash table is an
instance of the universe of possible values
The universe of possible values may be much
larger than the instance we wish to store

There are many possible combinations of 10
letters 26

But we might want a hash table to store just 1,000
names



Uniformity

A good hash function generates each value in
the output range with the same probability

That is, each legal hash table index has the same
chance of being generated
This property should hold for the universe of
possible values and for the expected inputs

The expected inputs should also be scattered
evenly over the hash table



A Bad Hash Function

A hash table is to store 1,000 numeric
estimates that can range from 1 to 1,000,000
Hash function is estimate % n

Where n = array size = 1,000
Is the distribution of values from the universe

of all possible values uniform?
And what about the distribution of expected

values?



Another Bad Hash Function

A hash table is to store 676 names

The hash function considers just the first two

letters of a name
Each letteris given a value wherea=1,b=2, ...
Function = (15t letter * 26 + value of 2" |etter) % 676

Is the distribution of values from the universe

of all possible values uniform?
And what about the distribution of expected

values?



General Principles

Use the entire search key in the hash function
If the hash function uses modulo arithmetic
make the table size a prime number

A simple and effective hash function is

Convert the key value to an integer, x

h(x) = x mod tableSize

Where tableSize is the first prime number larger than
twice the size of the number of expected values



Consider mapping n values from a universe of

possible values U into a hash table of size m
fU>nxm

Then for any hash function there is a set of values of
size n where all the keys map to the same location!

Determining a good hash function is a complex
subject

Thatis only introduced in this course



Converting Strings to Integers




Converting Strings to Integers

A simple method of converting a string to an
Integer is to:
Assign the values 1 to 26 to each letter
Concatenate the binary values for each letter

Similar to the method previously discussed
Using the string cat as an example:

C =3 =00011, @ = 00001, t =20 =10100
So cat = 000110000110100 (Or 3,124)
Note that 322 * 3+32** 1+ 20=73,124



Strings to Integers

If each letter of a string is represented as a 32 bit number
then for a length n string

value = ch_*32"% + ... + ch, ,*32* + ch,_*32°c

For large strings, this value will be very large

And may result in overflow
This expression can be factored

(...(ch,*32+ch)*32+ch)*..)*32+ch_,
This technique is called Horner's Method

This minimizes the number of arithmetic operations
Overflow can then be prevented by applying the mod
operator after each expression in parentheses



Horner's Method Example

Consider the integer representation of some string
6%323 + 18%322 + 15%321 + 8%32°
=196,608 + 18,432+ 480 + 8 = 215,528
Factoring this expression results in
(((6*32+18) *32 +15) *32 + 8) = 215,528
Assume that this key is to be hashed to an index using
the hash function key % 19
215,528 %19 =11
(((6*%32+28)%19*32+15)%19*32+8)%19=11
210 %19 =1, and 47 % 19=9, and 296 % 19 =11



Collisions




Dealing with Collisions

A collision occurs when two different keys are
mapped to the same index

Collisions may occur even when the hash function
is good
There are two main ways of dealing with
collisions
Open addressing

Separate chaining



Open Addressing

ldea — when an insertion results in a collision look for
an empty array element

Start at the index to which the hash function mapped the
inserted item

Look for a free space in the array following a particular
search pattern, known as probing

There are three open addressing schemes
Linear probing
Quadratic probing
Double hashing



Linear Probing

The hash table is searched sequentially
Starting with the original hash location
For each time the table is probed (for a free location) add one to

the index

Search h(search key) + 1, then h(search key) + 2, and so on until an
available location is found

If the sequence of probes reaches the last element of the array, wrap
around to arrayl[o]

Linear probing leads to primary clustering
The table contains groups of consecutively occupied locations

These clusters tend to get larger as time goes on
Reducing the efficiency of the hash table



Linear Probing Example

Hash table is size 23

The hash function, h = x mod 23, where x is
the search key value

The search key values are shown in the table

29 32 58 21



Linear Probing Example

Insert 81, h=81mod 23 =12

Which collides with 58 so use linear probing to
find a free space

First look at 12 + 1, which is free so insert the
item at index 13

29 32 58 81 21



Linear Probing Example

Insert 35, h =35 mod 23 =12
Which collides with 58 so use linear probing to

find a free space
First look at 22 + 1, which is occupied so look at

12 + 2 and insert the item at index 14

29 32 58 81 35 21



Linear Probing Example

Insert 60, h =60 mod 23 =14

Note that even though the key doesn’t hash
to 12 it still collides with an item that did
First look at 14 + 1, which is free

29 32 58 81 35 60 21



Linear Probing Example

Insert 12, h=12 mod 23 =12

The item will be inserted at index 16

Notice that primary clustering is beginning to
develop, making insertions less efficient

29 32 58 81 35 60 12 21



Searching

Searching for an item is similar to insertion
Find 59, h = 59 mod 23 = 13, index 13 does not
contain 59, but is occupied

Use linear probing to find 59 or an empty space
Conclude that 59 is not in the table

29 32 58 81 35 60 12 21



Quadratic Probing

Quadratic probing is a refinement of linear probing
that prevents primary clustering
For each probe, p, add p? to the original location index
15t probe: h(x)+12, 2" h(x)+22, 3% h(x)+3?, etc.
Results in secondary clustering

The same sequence of probes is used when two different
values hash to the same location

This delays the collision resolution for those values
Analysis suggests that secondary clustering is not a
significant problem



Quadratic Probing Example

Hash table is size 23

The hash function, h = x mod 23, where x is
the search key value

The search key values are shown in the table

29 32 58 21



Quadratic Probing Example

Insert 81, h=81mod 23 =12

Which collides with 58 so use quadratic probing
to find a free space

First look at 12 + 12, which is free so insert the
item at index 13

29 32 58 81 21



Quadratic Probing Example

Insert 35, h=35 mod 23 =12

Which collides with 58

First look at 12 + 12, which is occupied, then
look at 12 + 22 =16 and insert the item there

29 32 58 81 35 21



Quadratic Probing Example

Insert 60, h =60 mod 23 =14
The location is free, so insert the item

29 32 58 81 60 35 21



Quadratic Probing Example

Insert 12, h=12 mod 23 =12
First check index 12 + 12,

Theni12 + 22=16,
Then 12 + 32 = 21 (which is also occupied),
Then 12 + 42 = 28, wraps to index 5 which is free

12 29 32 58 81 60 35 21



Quadratic Probe Chains

Note that after some time a sequence of probes
repeats itself
In the preceding example h(key) = key % 23 = 12, resulting
in this sequence of probes (table size of 23)

12, 13, 16, 21, 28(5), 37(14), 48(2), 61(15), 76(7), 93(1), 112(20),
133(12), 156(19), 181(20), 208(1), 237(7), ...

This generally does not cause problems if
The data is not significantly skewed,

The hash table is large enough (around 2 * the number of
items), and

The hash function scatters the data evenly across the table



Double Hashing

In both linear and quadratic probing the probe sequence is

independent of the key
Double hashing produces key dependent probe sequences

In this scheme a second hash function, h,, determines the probe

sequence
The second hash function must follow these guidelines

h,(key)# o
h,#h,
A typical h, is p — (key mod p) where p is a prime number



Double Hashing Example

Hash table is size 23

The hash function, h = x mod 23, where x is
the search key value

The second hash function, h, = 5 — (key mod 5)

29 32 58 21



Double Hashing Example

Insert 81, h=81mod 23 =12
Which collides with 58 so use h, to find the

probe sequence value
h,=5—(81mods)=4,s0insertati12 + 4 =16

29 32 58 81 21



Double Hashing Example

Insert 35, h=35 mod 23 =12
Which collides with 58 so use h, to find a free

space
h,=5-(35mods5)=r5,s0insertati12 + 5 =17

29 32 58 81 35 21



Double Hashing Example

Insert 60, h =60 mod 23 =14

29 32 58 60 81 35 21



Double Hashing Example

Insert 83, h=83 mod 23 =14

h,=5-(83mods) =2, soinsertat14 + 2 =16,
which is occupied

The second probe increments the insertion point

by 2 again, soinsert at 16 + 2 = 18

29 32 58 60 81 35 83 21



Deletions and Open Addressing

Deletions add complexity to hash tables

It is easy to find and delete a particular item

But what happens when you want to search for some
other item?

The recently empty space may make a probe
sequence terminate prematurely

One solution is to mark a table location as either
empty, occupied or deleted

Locations in the deleted state can be re-used as items
are inserted



Separate Chaining

Separate chaining takes a different approach to
collisions
Each entry in the hash table is a pointer to a
linked list
If a collision occurs the new item is added to the end
of the list at the appropriate location
Performance degrades less rapidly using
separate chaining

But each search or insert requires an additional
operation to access the list



Efficiency




Hash Table Efficiency

When analyzing the efficiency of hashing it is necessary to
consider load factor, o

o = number of items [ table size

As the table fills, oo increases, and the chance of a collision
occurring also increases

Performance decreases as a increases
Unsuccessful searches make more comparisons

An unsuccessful search only ends when a free element is found
It is important to base the table size on the largest
possible number of items

The table size should be selected so that a does not exceed 2/3



Average Comparisons

Linear probing
When a = 2/3 unsuccessful searches require 5 comparisons, and
Successful searches require 2 comparisons

Quadratic probing and double hashing
When a = 2/3 unsuccessful searches require 3 comparisons
Successful searches require 2 comparisons

Separate chaining
The lists have to be traversed until the target is found

o comparisons for an unsuccessful search
Where a is the average size of the linked lists

1+ o/ 2 comparisons for a successful search



Hash Table Discussion

If o is less than V2, open addressing and separate
chaining give similar performance

As a increases, separate chaining performs better
than open addressing

However, separate chaining increases storage
overhead for the linked list pointers

It is important to note that in the worst case
hash table performance can be poor

That is, if the hash function does not evenly distribute
data across the table



