Hash Tables

Objectives

- Understand the basic structure of a hash table and its associated hash function
- Understand what makes a good (and a bad) hash function
- Understand how to deal with collisions
- Open addressing
- Separate chaining
- Be able to implement a hash table
- Understand how occupancy affects the efficiency of hash tables

Introduction

Problem Examples

- What can we do if we want rapid access to individual data items?
- Looking up data for a flight in an air traffic control system
- Looking up the address of someone making a 911 call
- Checking the spelling of words by looking up each one in a dictionary
- In each case speed is very important
- But the data does not need to be maintained in order

Possible Solutions

- Balanced binary search tree
- Lookup and insertion in $\mathrm{O}(\log n)$ time
- Which is relatively fast
- Binary search trees also maintain data in order, which may be not necessary for some problems
- Arrays
- Allow insertion in constant time, but lookup requires linear time
- But, if we know the index of a data item lookup can be performed in constant time

Thinking About Arrays

- Can we use an array to insert and retrieve data in constant time?
- Yes - as long as we know an item's index
- Consider this (very) constrained problem domain:
- A phone company wants to store data about its customers in Convenientville
- The company has approximately 9,000 customers
- Convenientville has a single area code (555)

Living in Convenientville

- Create an array of size 10,000
- Assign customers to array elements using their (four digit) phone number as the index
- Only around 1,000 array elements are wasted
- Customer data can be found in constant time using their phone numbers
- Of course this is not a general solution
- It relies on having conveniently numbered key values

A (Poor) General Strategy

- In the Convientville example each possible key value was assigned an array element - With the index being the 4 digit phone number - Therefore the array size is the number of possible values 10,000 in the example
- Not the number of actual values 9,000 in the example
- Consider two more examples that use this same general idea
- Canadian phone numbers
- Names

Phone Numbers in General

- Let's consider storing information about Canadians given their phone numbers
- Between 000-000-000 and 999-999-9999
- It's easy to convert phone numbers to integers
" Just get rid of the "-"s
- The keys range between o and 9,999,999,999
- Use Convenientville scheme to store data
- But will this work?

A Really Big Array!

- If we use Canadian phone numbers as the index to an array how big is the array?
" 9,999,999,999 (ten billion)
- That's a really big array!
- An estimate of the current population of Canada is $35,623,680$ source: ClA World Fact Book
- That means that we will use around 0.3% of the array
- That's a lot of wasted space
- And the array may not fit in main memory ...

Names

- What if we had to store data by name?
- We would need to convert strings to integer indexes
- Here is one way to encode strings as integers
- Assign a value between 1 and 26 to each letter
" $\mathrm{a}=1, \mathrm{z}=26$ (regardless of case)
- Sum the letter values in the string
- Not a very good method ...

$$
\text { "dog" = } 4+15+7=26
$$

Finding Unique String Values

- Ideally we would like to have a unique integer for each possible string
- The "sum the letters" encoding scheme does not achieve this
- There is a simple method to achieve this goal
- As before, assign each letter a value between 1 and 26
- Multiply the letter's value by 26 , where i is the position of the letter in the word:

$$
\begin{aligned}
& =" \operatorname{dog} "=4^{*} 26^{2}+15^{*} 26^{1}+7 * 26^{\circ}=3,101 \\
& =" \operatorname{god} "=7^{*} 26^{2}+15^{*} 26^{1}+4^{*} 26^{\circ}=5,126
\end{aligned}
$$

Afhahgm Vsyu

- The proposed system generates a unique integer for each string
- But most strings are not meaningful
- Given a string containing ten letters there are 26^{10} possible combinations of letters

- Which gives 141,167,095,653,376 different possible strings
- There are around 200,000 words in the English language
- It is not practical to create an array large enough to store all possible strings
- Just like the general telephone number problem

So What's The Problem?

- In an ideal world we would know which key values were going to be recorded
- The Convenientville example was close to ideal
- Most of the time this is not the case
- Usually, key values are not known in advance
- And, in many cases, the universe of possible key values is very large (e.g. names)
- So it is not practical to reserve space for all possible key values

A Different Approach

- Don't determine the array size by the maximum possible number of keys
- Fix the array size based on the amount of data to be stored
- Map the key value (phone number or name or some other data) to an array element
- We will need to convert the key value to an integer index using a hash function
- This is the basic idea behind hash tables

Hash Tables

Hash Tables

- A hash table consists of an array to store data
- Data often consists of complex types
- Or pointers to such objects
- An attribute of the object is designated as the table's key
- A hash function maps the key to an index
- The key must first be converted to an integer
- And mapped to an array index using a function
- Often the modulo function

Collisions

- A hash function may map two different keys to the same index why?
- Referred to as a collision
- Consider mapping phone numbers to an array of size 1,000 where $h=$ phone mod 1,000 this is not a good hash function ...
- Both 604-555-1987 and 512-555-7987 map to the same index (6,045,551,987 mod 1,000 = 987)
- A good hash function can significantly reduce the number of collisions
- It is still necessary to have a policy to deal with any collisions that may occur

Hash Functions

Hash Functions

- A hash function is a function that maps key values to array indexes
- Hash functions are performed in two steps
- Map the key value to an integer
- Map the integer to a legal array index
- Hash functions should have the following properties
- Fast
- Deterministic
- Uniformity

Hash Function Speed

- Hash functions should be fast and easy to calculate
- Access to a hash table should be nearly instantaneous and in constant time
- Most common hash functions require a single division on the representation of the key
- Converting the key to a number should also be able to be performed quickly

Deterministic Hash Functions

- A hash function must be deterministic
- For a given input it must always return the same value
- Otherwise it will not generate the same array index
- And the item will not be found in the hash table
- Hash functions should therefore not be determined by
- System time
- Memory location
- Pseudo-random numbers

Scattering Data

- A typical hash function usually results in some collisions
- Where two different search keys map to the same index
- A perfect hash function avoids collisions entirely
- Each search key value maps to a different index
- The goal is to reduce the number and effect of collisions
- To achieve this the data should be distributed evenly over the table

Possible Values

- Any set of values stored in a hash table is an instance of the universe of possible values
- The universe of possible values may be much larger than the instance we wish to store
- There are many possible combinations of 10 letters 26^{60}
- But we might want a hash table to store just 1,000 names

Uniformity

- A good hash function generates each value in the output range with the same probability
- That is, each legal hash table index has the same chance of being generated
- This property should hold for the universe of possible values and for the expected inputs
- The expected inputs should also be scattered evenly over the hash table

A Bad Hash Function

- A hash table is to store 1,000 numeric estimates that can range from 1 to 1,000,000
- Hash function is estimate \% n
- Where $n=$ array size $=1,000$
- Is the distribution of values from the universe of all possible values uniform?
- And what about the distribution of expected values?

Another Bad Hash Function

- A hash table is to store 676 names
- The hash function considers just the first two letters of a name
- Each letter is given a value where $a=1, b=2, \ldots$
" Function $=\left(1^{\text {st }}\right.$ letter * 26 + value of $2^{\text {nd }}$ letter) $\% 676$
- Is the distribution of values from the universe of all possible values uniform?
- And what about the distribution of expected values?

General Principles

- Use the entire search key in the hash function
- If the hash function uses modulo arithmetic make the table size a prime number
- A simple and effective hash function is
- Convert the key value to an integer, x
- $h(x)=x$ mod tableSize
- Where tableSize is the first prime number larger than twice the size of the number of expected values

Caveat

- Consider mapping n values from a universe of possible values U into a hash table of size m
- If $U \geq n \times m$
- Then for any hash function there is a set of values of size n where all the keys map to the same location!
- Determining a good hash function is a complex subject
- That is only introduced in this course

Converting Strings to Integers

Converting Strings to Integers

- A simple method of converting a string to an integer is to:
- Assign the values 1 to 26 to each letter
- Concatenate the binary values for each letter
- Similar to the method previously discussed
- Using the string cat as an example:
- $\mathrm{c}=3=00011, \mathrm{a}=00001, \mathrm{t}=20=10100$
- So cat $=000110000110100($ or 3,124$)$
- Note that $32^{2} * 3+32^{1 *} 1+20=3,124$

Strings to Integers

- If each letter of a string is represented as a 32 bit number then for a length n string
- value $=\mathrm{ch}_{0}{ }^{*} 32^{n-1}+\ldots+\mathrm{ch}_{n-2} * 32^{1}+\mathrm{ch}_{n-1} * 32^{\circ} \mathrm{c}$
- For large strings, this value will be very large
" And may result in overflow
- This expression can be factored
- $\left.\left(\ldots\left(\mathrm{ch}_{0} * 32+\mathrm{ch}_{1}\right) * 32+\mathrm{ch}_{2}\right) * \ldots\right) * 32+\mathrm{ch}_{\mathrm{n}-1}$
- This technique is called Horner's Method
- This minimizes the number of arithmetic operations
- Overflow can then be prevented by applying the mod operator after each expression in parentheses

Horner's Method Example

- Consider the integer representation of some string
= $6 * 32^{3}+18 * 32^{2}+15^{*} 32^{1}+8 * 32^{0}$
- $=196,608+18,432+480+8=215,528$
- Factoring this expression results in
- $(((6 * 32+18) * 32+15) * 32+8)=215,528$
- Assume that this key is to be hashed to an index using the hash function key $\% 19$
- $215,528 \% 19=11$
- (($(6 * 32+18) \% 19 * 32+15) \% 19 * 32+8) \% 19=11$
" $210 \% 19=1$, and $47 \% 19=9$, and $296 \% 19=11$

Collisions

Dealing with Collisions

- A collision occurs when two different keys are mapped to the same index
- Collisions may occur even when the hash function is good
- There are two main ways of dealing with collisions
- Open addressing
- Separate chaining

Open Addressing

- Idea - when an insertion results in a collision look for an empty array element
- Start at the index to which the hash function mapped the inserted item
- Look for a free space in the array following a particular search pattern, known as probing
- There are three open addressing schemes
- Linear probing
- Quadratic probing
- Double hashing

Linear Probing

- The hash table is searched sequentially
- Starting with the original hash location
- For each time the table is probed (for a free location) add one to the index
- Search h (search key) +1 , then h (search key) +2 , and so on until an available location is found
- If the sequence of probes reaches the last element of the array, wrap around to array[o]
- Linear probing leads to primary clustering
- The table contains groups of consecutively occupied locations
- These clusters tend to get larger as time goes on
- Reducing the efficiency of the hash table

Linear Probing Example

- Hash table is size 23
- The hash function, $h=x \bmod 23$, where x is the search key value
- The search key values are shown in the table

Linear Probing Example

- Insert $81, h=81 \bmod 23=12$
- Which collides with 58 so use linear probing to find a free space
- First look at $12+1$, which is free so insert the item at index 13

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
						29		32			58	81								21	

Linear Probing Example

- Insert $35, h=35 \bmod 23=12$
- Which collides with 58 so use linear probing to find a free space
- First look at $12+1$, which is occupied so look at $12+2$ and insert the item at index 14

-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
						29		32			58	81	35							21	

Linear Probing Example

- Insert 60, $h=60 \bmod 23=14$
- Note that even though the key doesn't hash to 12 it still collides with an item that did
- First look at $14+1$, which is free

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
						29		32		58	81	35	60						21			

Linear Probing Example

- Insert 12, $h=12 \bmod 23=12$

The item will be inserted at index 16
Notice that primary clustering is beginning to develop, making insertions less efficient

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
						29		32			58	81	35	60	12					21	

Searching

- Searching for an item is similar to insertion
- Find 59, $h=59 \bmod 23=13$, index 13 does not contain 59, but is occupied
- Use linear probing to find 59 or an empty space
- Conclude that 59 is not in the table

Quadratic Probing

- Quadratic probing is a refinement of linear probing that prevents primary clustering
- For each probe, p, add p^{2} to the original location index
- $1^{\text {st }}$ probe: $h(x)+1^{2}, 2^{\text {nd }}: h(x)+2^{2}, 3^{\text {rd }}: h(x)+3^{2}$, etc.
- Results in secondary clustering
- The same sequence of probes is used when two different values hash to the same location
- This delays the collision resolution for those values
- Analysis suggests that secondary clustering is not a significant problem

Quadratic Probing Example

- Hash table is size 23
- The hash function, $h=x \bmod 23$, where x is the search key value
- The search key values are shown in the table

Quadratic Probing Example

- Insert 81, $h=81 \bmod 23=12$
- Which collides with 58 so use quadratic probing to find a free space
- First look at $12+1^{2}$, which is free so insert the item at index 13

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
						29		32													

Quadratic Probing Example

- Insert 35, $h=35 \bmod 23=12$
- Which collides with 58
- First look at $12+1^{2}$, which is occupied, then look at $12+2^{2}=16$ and insert the item there

Quadratic Probing Example

- Insert 60, $h=60 \bmod 23=14$ The location is free, so insert the item

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
						29		32			58	81	60		35					21	

Quadratic Probing Example

- Insert 12, $h=12 \bmod 23=12$
- First check index $12+1^{2}$,
- Then $12+2^{2}=16$,
- Then $12+3^{2}=21$ (which is also occupied),
- Then $12+4^{2}=28$, wraps to index 5 which is free

Quadratic Probe Chains

- Note that after some time a sequence of probes repeats itself
- In the preceding example $h($ key $)=$ key \% 23 = 12, resulting in this sequence of probes (table size of 23)
" $12,13,16,21,28(5), 37(14), 48(2), 61(15), 76(7), 93(1), 112(20)$, 133(18), 156(18), 181(20), 208(1), 237(7), ...
- This generally does not cause problems if
- The data is not significantly skewed,
- The hash table is large enough (around 2 * the number of items), and
- The hash function scatters the data evenly across the table

Double Hashing

- In both linear and quadratic probing the probe sequence is independent of the key
- Double hashing produces key dependent probe sequences
- In this scheme a second hash function, $h_{2 \prime}$ determines the probe sequence
- The second hash function must follow these guidelines
- $h_{2}($ key $) \neq 0$
- $h_{2} \neq h_{1}$
- A typical h_{2} is $p-(\operatorname{key} \bmod p)$ where p is a prime number

Double Hashing Example

- Hash table is size 23
- The hash function, $h=x \bmod 23$, where x is the search key value
The second hash function, $h_{2}=5-($ key $\bmod 5)$

Double Hashing Example

- Insert 81, $h=81 \bmod 23=12$
- Which collides with 58 so use h_{2} to find the probe sequence value
- $h_{2}=5-(81 \bmod 5)=4$, so insert at $12+4=16$

Double Hashing Example

- Insert 35, $h=35 \bmod 23=12$
- Which collides with 58 so use h_{2} to find a free space
- $h_{2}=5-(35 \bmod 5)=5$, so insert at $12+5=17$

Double Hashing Example

- Insert 60, $h=60 \bmod 23=14$

-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22																			
						29		32		58	60	81	35				21			

Double Hashing Example

- Insert 83, $h=83 \bmod 23=14$
- $h_{2}=5-(83 \bmod 5)=2$, so insert at $14+2=16$, which is occupied
- The second probe increments the insertion point by 2 again, so insert at $16+2=18$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Deletions and Open Addressing

- Deletions add complexity to hash tables
- It is easy to find and delete a particular item
- But what happens when you want to search for some other item?
- The recently empty space may make a probe sequence terminate prematurely
- One solution is to mark a table location as either empty, occupied or deleted
- Locations in the deleted state can be re-used as items are inserted

Separate Chaining

- Separate chaining takes a different approach to collisions
- Each entry in the hash table is a pointer to a linked list
- If a collision occurs the new item is added to the end of the list at the appropriate location
- Performance degrades less rapidly using separate chaining
- But each search or insert requires an additional operation to access the list

Efficiency

Hash Table Efficiency

- When analyzing the efficiency of hashing it is necessary to consider load factor, α
- $\alpha=$ number of items / table size
- As the table fills, α increases, and the chance of a collision occurring also increases
- Performance decreases as α increases
- Unsuccessful searches make more comparisons
- An unsuccessful search only ends when a free element is found
- It is important to base the table size on the largest possible number of items
- The table size should be selected so that α does not exceed $2 / 3$

Average Comparisons

- Linear probing
- When $\alpha=2 / 3$ unsuccessful searches require 5 comparisons, and
- Successful searches require 2 comparisons
- Quadratic probing and double hashing
- When $\alpha=2 / 3$ unsuccessful searches require 3 comparisons
- Successful searches require 2 comparisons
- Separate chaining
- The lists have to be traversed until the target is found
- α comparisons for an unsuccessful search
- Where α is the average size of the linked lists
- $1+\alpha / 2$ comparisons for a successful search

Hash Table Discussion

- If α is less than $1 / 2$, open addressing and separate chaining give similar performance
- As α increases, separate chaining performs better than open addressing
- However, separate chaining increases storage overhead for the linked list pointers
- It is important to note that in the worst case hash table performance can be poor
- That is, if the hash function does not evenly distribute data across the table

