


 Understand the basic structure of a hash table and its 

associated hash function

 Understand what makes a good (and a bad) hash function

 Understand how to deal with collisions

 Open addressing

 Separate chaining

 Be able to implement a hash table

 Understand how occupancy affects the efficiency of 

hash tables





 What can we do if we want rapid 
access to individual data items?

 Looking up data for a flight in an air 
traffic control system

 Looking up the address of someone 
making a 911 call

 Checking the spelling of words by looking 
up each one in a dictionary

 In each case speed is very important

 But the data does not need to be maintained in order



 Balanced binary search tree

 Lookup and insertion in O(logn) time

▪ Which is relatively fast

 Binary search trees also maintain data in order, which 
may be not necessary for some problems

 Arrays

 Allow insertion in constant time, but lookup requires 
linear time

 But, if we know the index of a data item lookup can be 
performed in constant time

spoilers!



 Can we use an array to insert and retrieve 
data in constant time?

 Yes – as long as we know an item's index

 Consider this (very) constrained problem 
domain:

 A phone company wants to store data about its 
customers in Convenientville

 The company has approximately 9,000 customers

 Convenientville has a single area code (555)



 Create an array of size 10,000

 Assign customers to array elements using their 
(four digit) phone number as the index

 Only around 1,000 array elements are wasted

 Customer data can be found in constant time 
using their phone numbers

 Of course this is not a general solution

 It relies on having conveniently numbered key
values



 In the Convientville example each possible 
key value was assigned an array element
 With the index being the 4 digit phone number

 Therefore the array size is the number of possible
values
▪ Not the number of actual values

 Consider two more examples that use this 
same general idea
 Canadian phone numbers

 Names

10,000 in the example

9,000 in the example



 Let's consider storing information about 
Canadians given their phone numbers

 Between 000-000-000 and 999-999-9999

 It's easy to convert phone numbers to 
integers

 Just get rid of the "-"s

 The keys range between 0 and 9,999,999,999

 Use Convenientville scheme to store data

 But will this work?



 If we use Canadian phone numbers as the index 

to an array how big is the array?

 9,999,999,999 (ten billion)

 That's a really big array!

 An estimate of the current population of Canada 

is 35,623,680

 That means that we will use around 0.3% of the array

▪ That's a lot of wasted space

▪ And the array may not fit in main memory …

source:  CIA World Fact Book

https://www.cia.gov/library/publications/the-world-factbook/geos/ca.html


 What if we had to store data by name?

 We would need to convert strings to 

integer indexes

 Here is one way to encode strings as 

integers

 Assign a value between 1 and 26 to each 

letter

 a = 1, z = 26 (regardless of case)

 Sum the letter values in the string

 Not a very good method …

"dog" = 4 + 15 + 7 = 26

"god" = 7 + 15 + 4 = 26



 Ideally we would like to have a unique integer for 
each possible string

 The “sum the letters” encoding scheme does not 
achieve this

 There is a simple method to achieve this goal

 As before, assign each letter a value between 1 and 26

 Multiply the letter's value by 26i, where i is the 
position of the letter in the word:

▪ "dog" = 4*262 + 15*261 + 7*260 = 3,101

▪ "god" = 7*262 + 15*261 + 4*260 = 5,126



 The proposed system generates a unique integer 
for each string

 But most strings are not meaningful

 Given a string containing ten letters there 
are 2610 possible combinations of letters

▪ Which gives 141,167,095,653,376 different possible strings

▪ There are around 200,000 words in the English language

 It is not practical to create an array large enough 
to store all possible strings

 Just like the general telephone number problem



 In an ideal world we would know which key 
values were going to be recorded

 The Convenientville example was close to ideal

 Most of the time this is not the case

 Usually, key values are not known in advance

 And, in many cases, the universe of possible key 
values is very large (e.g. names)

 So it is not practical to reserve space for all 
possible key values



 Don't determine the array size by the 
maximum possible number of keys

 Fix the array size based on the amount of 
data to be stored

 Map the key value (phone number or name or 
some other data) to an array element

 We will need to convert the key value to an 
integer index using a hash function

 This is the basic idea behind hash tables





 A hash table consists of an array to store data

 Data often consists of complex types

▪ Or pointers to such objects

 An attribute of the object is designated 
as the table's key

 A hash function maps the key to an index

 The key must first be converted to an integer

 And mapped to an array index using a function

▪ Often the modulo function



 A hash function may map two different keys to the 
same index

 Referred to as a collision

 Consider mapping phone numbers to an array of size 1,000 
where h = phone mod 1,000
▪ Both 604-555-1987 and 512-555-7987 map to the same index 

(6,045,551,987 mod 1,000 = 987)

 A good hash function can significantly reduce the 
number of collisions

 It is still necessary to have a policy to deal with any 
collisions that may occur

why?

this is not a good hash function …





 A hash function is a function that maps key values to 

array indexes

 Hash functions are performed in two steps

 Map the key value to an integer

 Map the integer to a legal array index

 Hash functions should have the following properties

 Fast

 Deterministic

 Uniformity



 Hash functions should be fast 

and easy to calculate

 Access to a hash table should be nearly 

instantaneous and in constant time

 Most common hash functions require a single 

division on the representation of the key

 Converting the key to a number should also be 

able to be performed quickly



 A hash function must be deterministic

 For a given input it must always return the same value

▪ Otherwise it will not generate the same array index

▪ And the item will not be found in the hash table

 Hash functions should therefore not be 

determined by

 System time

 Memory location

 Pseudo-random numbers



 A typical hash function usually results in some 

collisions

 Where two different search keys map to the same index

 A perfect hash function avoids collisions entirely

▪ Each search key value maps to a different index

 The goal is to reduce the number and effect of 

collisions

 To achieve this the data should be distributed evenly 

over the table



 Any set of values stored in a hash table is an 
instance of the universe of possible values

 The universe of possible values may be much 
larger than the instance we wish to store

 There are many possible combinations of 10 
letters

 But we might want a hash table to store just 1,000 
names

2610



 A g0od hash function generates each value in 
the output range with the same probability

 That is, each legal hash table index has the same 
chance of being generated

 This property should hold for the universe of 
possible values and for the expected inputs

 The expected inputs should also be scattered 
evenly over the hash table



 A hash table is to store 1,000 numeric 
estimates that can range from 1 to 1,000,000

 Hash function is estimate % n

▪ Where n = array size = 1,000

 Is the distribution of values from the universe 
of all possible values uniform?

 And what about the distribution of expected 
values?



 A hash table is to store 676 names

 The hash function considers just the first two 
letters of a name

▪ Each letter is given a value where a = 1, b = 2, …

▪ Function = (1st letter * 26 + value of 2nd letter) % 676

 Is the distribution of values from the universe 
of all possible values uniform?

 And what about the distribution of expected 
values?



 Use the entire search key in the hash function
 If the hash function uses modulo arithmetic 

make the table size a prime number
 A simple and effective hash function is

 Convert the key value to an integer, x

 h(x) = x mod tableSize

▪ Where tableSize is the first prime number larger than 
twice the size of the number of expected values



 Consider mapping n values from a universe of 

possible values U into a hash table of size m

 If U  n  m

 Then for any hash function there is a set of values of 

size n where all the keys map to the same location!

 Determining a good hash function is a complex 

subject

 That is only introduced in this course





 A simple method of converting a string to an 
integer is to:

 Assign the values 1 to 26 to each letter

 Concatenate the binary values for each letter

▪ Similar to the method previously discussed

 Using the string cat as an example:

 c = 3 = 00011, a = 00001, t = 20 = 10100

 So cat = 000110000110100 (or 3,124)

 Note that 322 * 3 + 321 * 1 + 20 = 3,124



 If each letter of a string is represented as a 32 bit number 
then for a length n string

 value = ch0*32n-1 + … + chn-2*321 + chn-1*320 c

 For large strings, this value will be very large

▪ And may result in overflow

 This expression can be factored

 (…(ch0*32 + ch1) * 32 + ch2) * …) * 32 + chn-1

 This technique is called Horner's Method

 This minimizes the number of arithmetic operations

 Overflow can then be prevented by applying the mod
operator after each expression in parentheses



 Consider the integer representation of some string

 6*323 + 18*322 + 15*321 + 8*320

 = 196,608 + 18,432+ 480 + 8 = 215,528

 Factoring this expression results in

 (((6*32 + 18) * 32 + 15) * 32 + 8) = 215,528

 Assume that this key is to be hashed to an index using 
the hash function key % 19

 215,528 % 19 = 11

 (((6*32 + 18) % 19 * 32 + 15) % 19 * 32 + 8) % 19 = 11
▪ 210 % 19 = 1, and 47 % 19 = 9, and 296 % 19 = 11





 A collision occurs when two different keys are 
mapped to the same index

 Collisions may occur even when the hash function 
is good

 There are two main ways of dealing with 
collisions

 Open addressing

 Separate chaining



 Idea – when an insertion results in a collision look for 
an empty array element

 Start at the index to which the hash function mapped the 
inserted item

 Look for a free space in the array following a particular 
search pattern, known as probing

 There are three open addressing schemes

 Linear probing

 Quadratic probing

 Double hashing



 The hash table is searched sequentially

 Starting with the original hash location

 For each time the table is probed (for a free location) add one to 
the index

▪ Search h(search key) + 1, then h(search key) + 2, and so on until an 
available location is found

▪ If the sequence of probes reaches the last element of the array, wrap 
around to array[0]

 Linear probing leads to primary clustering

 The table contains groups of consecutively occupied locations

 These clusters tend to get larger as time goes on

▪ Reducing the efficiency of the hash table



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

 Hash table is size 23
 The hash function, h = x mod 23, where x is 

the search key value
 The search key values are shown in the table



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

 Insert 81, h = 81 mod 23 = 12
 Which collides with 58 so use linear probing to 

find a free space
 First look at 12 + 1, which is free so insert the 

item at index 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

 Insert 35, h = 35 mod 23 = 12
 Which collides with 58 so use linear probing to 

find a free space
 First look at 12 + 1, which is occupied so look at 

12 + 2 and insert the item at index 14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 60 21

 Insert 60, h = 60 mod 23 = 14
 Note that even though the key doesn’t hash 

to 12 it still collides with an item that did
 First look at 14 + 1, which is free



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 60 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 60 12 21

 Insert 12, h = 12 mod 23 = 12
 The item will be inserted at index 16
 Notice that primary clustering is beginning to 

develop, making insertions less efficient



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 60 12 21

 Searching for an item is similar to insertion
 Find 59, h = 59 mod 23 = 13, index 13 does not 

contain 59, but is occupied
 Use linear probing to find 59 or an empty space
 Conclude that 59 is not in the table



 Quadratic probing is a refinement of linear probing 

that prevents primary clustering

 For each probe, p, add p2 to the original location index

▪ 1st probe: h(x)+12, 2nd: h(x)+22, 3rd: h(x)+32, etc.

 Results in secondary clustering

 The same sequence of probes is used when two different 

values hash to the same location

 This delays the collision resolution for those values

 Analysis suggests that secondary clustering is not a 

significant problem



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

 Hash table is size 23
 The hash function, h = x mod 23, where x is 

the search key value
 The search key values are shown in the table



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

 Insert 81, h = 81 mod 23 = 12
 Which collides with 58 so use quadratic probing 

to find a free space
 First look at 12 + 12, which is free so insert the 

item at index 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

 Insert 35, h = 35 mod 23 = 12
 Which collides with 58
 First look at 12 + 12, which is occupied, then 

look at 12 + 22 = 16 and insert the item there



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 60 35 21

 Insert 60, h = 60 mod 23 = 14
 The location is free, so insert the item



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 60 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

12 29 32 58 81 60 35 21

 Insert 12, h = 12 mod 23 = 12
 First check index 12 + 12,
 Then 12 + 22 = 16,
 Then 12 + 32 = 21 (which is also occupied),
 Then 12 + 42 = 28, wraps to index 5 which is free 



 Note that after some time a sequence of probes 
repeats itself

 In the preceding example h(key) = key % 23 = 12, resulting 
in this sequence of probes (table size of 23)
▪ 12, 13, 16, 21, 28(5), 37(14), 48(2), 61(15), 76(7),  93(1), 112(20), 

133(18), 156(18), 181(20), 208(1), 237(7), ...

 This generally does not cause problems if

 The data is not significantly skewed,

 The hash table is large enough (around 2 * the number of 
items), and

 The hash function scatters the data evenly across the table



 In both linear and quadratic probing the probe sequence is 
independent of the key

 Double hashing produces key dependent probe sequences

 In this scheme a second hash function, h2, determines the probe 
sequence

 The second hash function must follow these guidelines

 h2(key)≠ 0

 h2 ≠ h1

 A typical h2 is p – (key mod p) where p is a prime number



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

 Hash table is size 23
 The hash function, h = x mod 23, where x is 

the search key value
 The second hash function, h2 = 5 – (key mod 5)



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

 Insert 81, h = 81 mod 23 = 12
 Which collides with 58 so use h2 to find the 

probe sequence value
 h2 = 5 – (81 mod 5) = 4, so insert at 12 + 4 = 16



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

 Insert 35, h = 35 mod 23 = 12
 Which collides with 58 so use h2 to find a free 

space
 h2 = 5 – (35 mod 5) = 5, so insert at 12 + 5 = 17



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 60 81 35 21

 Insert 60, h = 60 mod 23 = 14



 Insert 83, h = 83 mod 23 = 14
 h2 = 5 – (83 mod 5) = 2, so insert at 14 + 2 = 16, 

which is occupied
 The second probe increments the insertion point 

by 2 again, so insert at 16 + 2 = 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 60 81 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 60 81 35 83 21



 Deletions add complexity to hash tables

 It is easy to find and delete a particular item

 But what happens when you want to search for some 
other item?

 The recently empty space may make a probe 
sequence terminate prematurely

 One solution is to mark a table location as either 
empty, occupied or deleted

 Locations in the deleted state can be re-used as items 
are inserted



 Separate chaining takes a different approach to 
collisions

 Each entry in the hash table is a pointer to a 
linked list

 If a collision occurs the new item is added to the end 
of the list at the appropriate location

 Performance degrades less rapidly using 
separate chaining

 But each search or insert requires an additional 
operation to access the list





 When analyzing the efficiency of hashing it is necessary to 
consider load factor, 

  = number of items / table size

 As the table fills,  increases, and the chance of a collision 
occurring also increases

▪ Performance decreases as  increases

 Unsuccessful searches make more comparisons

▪ An unsuccessful search only ends when a free element is found

 It is important to base the table size on the largest 
possible number of items

 The table size should be selected so that  does not exceed 2/3



 Linear probing

 When  = 2/3 unsuccessful searches require 5 comparisons, and 

 Successful searches require 2 comparisons

 Quadratic probing and double hashing

 When  = 2/3 unsuccessful searches require 3 comparisons

 Successful searches require 2 comparisons

 Separate chaining

 The lists have to be traversed until the target is found

  comparisons for an unsuccessful search

▪ Where  is the average size of the linked lists

 1 +  / 2 comparisons for a successful search



 If  is less than ½, open addressing and separate 
chaining give similar performance

 As  increases, separate chaining performs better 
than open addressing

 However, separate chaining increases storage 
overhead for the linked list pointers

 It is important to note that in the worst case 
hash table performance can be poor

 That is, if the hash function does not evenly distribute 
data across the table


