


 Understand the basic structure of a hash table and its 

associated hash function

 Understand what makes a good (and a bad) hash function

 Understand how to deal with collisions

 Open addressing

 Separate chaining

 Be able to implement a hash table

 Understand how occupancy affects the efficiency of 

hash tables





 What can we do if we want rapid 
access to individual data items?

 Looking up data for a flight in an air 
traffic control system

 Looking up the address of someone 
making a 911 call

 Checking the spelling of words by looking 
up each one in a dictionary

 In each case speed is very important

 But the data does not need to be maintained in order



 Balanced binary search tree

 Lookup and insertion in O(logn) time

▪ Which is relatively fast

 Binary search trees also maintain data in order, which 
may be not necessary for some problems

 Arrays

 Allow insertion in constant time, but lookup requires 
linear time

 But, if we know the index of a data item lookup can be 
performed in constant time

spoilers!



 Can we use an array to insert and retrieve 
data in constant time?

 Yes – as long as we know an item's index

 Consider this (very) constrained problem 
domain:

 A phone company wants to store data about its 
customers in Convenientville

 The company has approximately 9,000 customers

 Convenientville has a single area code (555)



 Create an array of size 10,000

 Assign customers to array elements using their 
(four digit) phone number as the index

 Only around 1,000 array elements are wasted

 Customer data can be found in constant time 
using their phone numbers

 Of course this is not a general solution

 It relies on having conveniently numbered key
values



 In the Convientville example each possible 
key value was assigned an array element
 With the index being the 4 digit phone number

 Therefore the array size is the number of possible
values
▪ Not the number of actual values

 Consider two more examples that use this 
same general idea
 Canadian phone numbers

 Names

10,000 in the example

9,000 in the example



 Let's consider storing information about 
Canadians given their phone numbers

 Between 000-000-000 and 999-999-9999

 It's easy to convert phone numbers to 
integers

 Just get rid of the "-"s

 The keys range between 0 and 9,999,999,999

 Use Convenientville scheme to store data

 But will this work?



 If we use Canadian phone numbers as the index 

to an array how big is the array?

 9,999,999,999 (ten billion)

 That's a really big array!

 An estimate of the current population of Canada 

is 35,623,680

 That means that we will use around 0.3% of the array

▪ That's a lot of wasted space

▪ And the array may not fit in main memory …

source:  CIA World Fact Book

https://www.cia.gov/library/publications/the-world-factbook/geos/ca.html


 What if we had to store data by name?

 We would need to convert strings to 

integer indexes

 Here is one way to encode strings as 

integers

 Assign a value between 1 and 26 to each 

letter

 a = 1, z = 26 (regardless of case)

 Sum the letter values in the string

 Not a very good method …

"dog" = 4 + 15 + 7 = 26

"god" = 7 + 15 + 4 = 26



 Ideally we would like to have a unique integer for 
each possible string

 The “sum the letters” encoding scheme does not 
achieve this

 There is a simple method to achieve this goal

 As before, assign each letter a value between 1 and 26

 Multiply the letter's value by 26i, where i is the 
position of the letter in the word:

▪ "dog" = 4*262 + 15*261 + 7*260 = 3,101

▪ "god" = 7*262 + 15*261 + 4*260 = 5,126



 The proposed system generates a unique integer 
for each string

 But most strings are not meaningful

 Given a string containing ten letters there 
are 2610 possible combinations of letters

▪ Which gives 141,167,095,653,376 different possible strings

▪ There are around 200,000 words in the English language

 It is not practical to create an array large enough 
to store all possible strings

 Just like the general telephone number problem



 In an ideal world we would know which key 
values were going to be recorded

 The Convenientville example was close to ideal

 Most of the time this is not the case

 Usually, key values are not known in advance

 And, in many cases, the universe of possible key 
values is very large (e.g. names)

 So it is not practical to reserve space for all 
possible key values



 Don't determine the array size by the 
maximum possible number of keys

 Fix the array size based on the amount of 
data to be stored

 Map the key value (phone number or name or 
some other data) to an array element

 We will need to convert the key value to an 
integer index using a hash function

 This is the basic idea behind hash tables





 A hash table consists of an array to store data

 Data often consists of complex types

▪ Or pointers to such objects

 An attribute of the object is designated 
as the table's key

 A hash function maps the key to an index

 The key must first be converted to an integer

 And mapped to an array index using a function

▪ Often the modulo function



 A hash function may map two different keys to the 
same index

 Referred to as a collision

 Consider mapping phone numbers to an array of size 1,000 
where h = phone mod 1,000
▪ Both 604-555-1987 and 512-555-7987 map to the same index 

(6,045,551,987 mod 1,000 = 987)

 A good hash function can significantly reduce the 
number of collisions

 It is still necessary to have a policy to deal with any 
collisions that may occur

why?

this is not a good hash function …





 A hash function is a function that maps key values to 

array indexes

 Hash functions are performed in two steps

 Map the key value to an integer

 Map the integer to a legal array index

 Hash functions should have the following properties

 Fast

 Deterministic

 Uniformity



 Hash functions should be fast 

and easy to calculate

 Access to a hash table should be nearly 

instantaneous and in constant time

 Most common hash functions require a single 

division on the representation of the key

 Converting the key to a number should also be 

able to be performed quickly



 A hash function must be deterministic

 For a given input it must always return the same value

▪ Otherwise it will not generate the same array index

▪ And the item will not be found in the hash table

 Hash functions should therefore not be 

determined by

 System time

 Memory location

 Pseudo-random numbers



 A typical hash function usually results in some 

collisions

 Where two different search keys map to the same index

 A perfect hash function avoids collisions entirely

▪ Each search key value maps to a different index

 The goal is to reduce the number and effect of 

collisions

 To achieve this the data should be distributed evenly 

over the table



 Any set of values stored in a hash table is an 
instance of the universe of possible values

 The universe of possible values may be much 
larger than the instance we wish to store

 There are many possible combinations of 10 
letters

 But we might want a hash table to store just 1,000 
names

2610



 A g0od hash function generates each value in 
the output range with the same probability

 That is, each legal hash table index has the same 
chance of being generated

 This property should hold for the universe of 
possible values and for the expected inputs

 The expected inputs should also be scattered 
evenly over the hash table



 A hash table is to store 1,000 numeric 
estimates that can range from 1 to 1,000,000

 Hash function is estimate % n

▪ Where n = array size = 1,000

 Is the distribution of values from the universe 
of all possible values uniform?

 And what about the distribution of expected 
values?



 A hash table is to store 676 names

 The hash function considers just the first two 
letters of a name

▪ Each letter is given a value where a = 1, b = 2, …

▪ Function = (1st letter * 26 + value of 2nd letter) % 676

 Is the distribution of values from the universe 
of all possible values uniform?

 And what about the distribution of expected 
values?



 Use the entire search key in the hash function
 If the hash function uses modulo arithmetic 

make the table size a prime number
 A simple and effective hash function is

 Convert the key value to an integer, x

 h(x) = x mod tableSize

▪ Where tableSize is the first prime number larger than 
twice the size of the number of expected values



 Consider mapping n values from a universe of 

possible values U into a hash table of size m

 If U  n  m

 Then for any hash function there is a set of values of 

size n where all the keys map to the same location!

 Determining a good hash function is a complex 

subject

 That is only introduced in this course





 A simple method of converting a string to an 
integer is to:

 Assign the values 1 to 26 to each letter

 Concatenate the binary values for each letter

▪ Similar to the method previously discussed

 Using the string cat as an example:

 c = 3 = 00011, a = 00001, t = 20 = 10100

 So cat = 000110000110100 (or 3,124)

 Note that 322 * 3 + 321 * 1 + 20 = 3,124



 If each letter of a string is represented as a 32 bit number 
then for a length n string

 value = ch0*32n-1 + … + chn-2*321 + chn-1*320 c

 For large strings, this value will be very large

▪ And may result in overflow

 This expression can be factored

 (…(ch0*32 + ch1) * 32 + ch2) * …) * 32 + chn-1

 This technique is called Horner's Method

 This minimizes the number of arithmetic operations

 Overflow can then be prevented by applying the mod
operator after each expression in parentheses



 Consider the integer representation of some string

 6*323 + 18*322 + 15*321 + 8*320

 = 196,608 + 18,432+ 480 + 8 = 215,528

 Factoring this expression results in

 (((6*32 + 18) * 32 + 15) * 32 + 8) = 215,528

 Assume that this key is to be hashed to an index using 
the hash function key % 19

 215,528 % 19 = 11

 (((6*32 + 18) % 19 * 32 + 15) % 19 * 32 + 8) % 19 = 11
▪ 210 % 19 = 1, and 47 % 19 = 9, and 296 % 19 = 11





 A collision occurs when two different keys are 
mapped to the same index

 Collisions may occur even when the hash function 
is good

 There are two main ways of dealing with 
collisions

 Open addressing

 Separate chaining



 Idea – when an insertion results in a collision look for 
an empty array element

 Start at the index to which the hash function mapped the 
inserted item

 Look for a free space in the array following a particular 
search pattern, known as probing

 There are three open addressing schemes

 Linear probing

 Quadratic probing

 Double hashing



 The hash table is searched sequentially

 Starting with the original hash location

 For each time the table is probed (for a free location) add one to 
the index

▪ Search h(search key) + 1, then h(search key) + 2, and so on until an 
available location is found

▪ If the sequence of probes reaches the last element of the array, wrap 
around to array[0]

 Linear probing leads to primary clustering

 The table contains groups of consecutively occupied locations

 These clusters tend to get larger as time goes on

▪ Reducing the efficiency of the hash table



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

 Hash table is size 23
 The hash function, h = x mod 23, where x is 

the search key value
 The search key values are shown in the table



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

 Insert 81, h = 81 mod 23 = 12
 Which collides with 58 so use linear probing to 

find a free space
 First look at 12 + 1, which is free so insert the 

item at index 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

 Insert 35, h = 35 mod 23 = 12
 Which collides with 58 so use linear probing to 

find a free space
 First look at 12 + 1, which is occupied so look at 

12 + 2 and insert the item at index 14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 60 21

 Insert 60, h = 60 mod 23 = 14
 Note that even though the key doesn’t hash 

to 12 it still collides with an item that did
 First look at 14 + 1, which is free



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 60 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 60 12 21

 Insert 12, h = 12 mod 23 = 12
 The item will be inserted at index 16
 Notice that primary clustering is beginning to 

develop, making insertions less efficient



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 60 12 21

 Searching for an item is similar to insertion
 Find 59, h = 59 mod 23 = 13, index 13 does not 

contain 59, but is occupied
 Use linear probing to find 59 or an empty space
 Conclude that 59 is not in the table



 Quadratic probing is a refinement of linear probing 

that prevents primary clustering

 For each probe, p, add p2 to the original location index

▪ 1st probe: h(x)+12, 2nd: h(x)+22, 3rd: h(x)+32, etc.

 Results in secondary clustering

 The same sequence of probes is used when two different 

values hash to the same location

 This delays the collision resolution for those values

 Analysis suggests that secondary clustering is not a 

significant problem



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

 Hash table is size 23
 The hash function, h = x mod 23, where x is 

the search key value
 The search key values are shown in the table



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

 Insert 81, h = 81 mod 23 = 12
 Which collides with 58 so use quadratic probing 

to find a free space
 First look at 12 + 12, which is free so insert the 

item at index 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

 Insert 35, h = 35 mod 23 = 12
 Which collides with 58
 First look at 12 + 12, which is occupied, then 

look at 12 + 22 = 16 and insert the item there



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 60 35 21

 Insert 60, h = 60 mod 23 = 14
 The location is free, so insert the item



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 60 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

12 29 32 58 81 60 35 21

 Insert 12, h = 12 mod 23 = 12
 First check index 12 + 12,
 Then 12 + 22 = 16,
 Then 12 + 32 = 21 (which is also occupied),
 Then 12 + 42 = 28, wraps to index 5 which is free 



 Note that after some time a sequence of probes 
repeats itself

 In the preceding example h(key) = key % 23 = 12, resulting 
in this sequence of probes (table size of 23)
▪ 12, 13, 16, 21, 28(5), 37(14), 48(2), 61(15), 76(7),  93(1), 112(20), 

133(18), 156(18), 181(20), 208(1), 237(7), ...

 This generally does not cause problems if

 The data is not significantly skewed,

 The hash table is large enough (around 2 * the number of 
items), and

 The hash function scatters the data evenly across the table



 In both linear and quadratic probing the probe sequence is 
independent of the key

 Double hashing produces key dependent probe sequences

 In this scheme a second hash function, h2, determines the probe 
sequence

 The second hash function must follow these guidelines

 h2(key)≠ 0

 h2 ≠ h1

 A typical h2 is p – (key mod p) where p is a prime number



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

 Hash table is size 23
 The hash function, h = x mod 23, where x is 

the search key value
 The second hash function, h2 = 5 – (key mod 5)



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

 Insert 81, h = 81 mod 23 = 12
 Which collides with 58 so use h2 to find the 

probe sequence value
 h2 = 5 – (81 mod 5) = 4, so insert at 12 + 4 = 16



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

 Insert 35, h = 35 mod 23 = 12
 Which collides with 58 so use h2 to find a free 

space
 h2 = 5 – (35 mod 5) = 5, so insert at 12 + 5 = 17



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 81 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 60 81 35 21

 Insert 60, h = 60 mod 23 = 14



 Insert 83, h = 83 mod 23 = 14
 h2 = 5 – (83 mod 5) = 2, so insert at 14 + 2 = 16, 

which is occupied
 The second probe increments the insertion point 

by 2 again, so insert at 16 + 2 = 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 60 81 35 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

29 32 58 60 81 35 83 21



 Deletions add complexity to hash tables

 It is easy to find and delete a particular item

 But what happens when you want to search for some 
other item?

 The recently empty space may make a probe 
sequence terminate prematurely

 One solution is to mark a table location as either 
empty, occupied or deleted

 Locations in the deleted state can be re-used as items 
are inserted



 Separate chaining takes a different approach to 
collisions

 Each entry in the hash table is a pointer to a 
linked list

 If a collision occurs the new item is added to the end 
of the list at the appropriate location

 Performance degrades less rapidly using 
separate chaining

 But each search or insert requires an additional 
operation to access the list





 When analyzing the efficiency of hashing it is necessary to 
consider load factor, 

  = number of items / table size

 As the table fills,  increases, and the chance of a collision 
occurring also increases

▪ Performance decreases as  increases

 Unsuccessful searches make more comparisons

▪ An unsuccessful search only ends when a free element is found

 It is important to base the table size on the largest 
possible number of items

 The table size should be selected so that  does not exceed 2/3



 Linear probing

 When  = 2/3 unsuccessful searches require 5 comparisons, and 

 Successful searches require 2 comparisons

 Quadratic probing and double hashing

 When  = 2/3 unsuccessful searches require 3 comparisons

 Successful searches require 2 comparisons

 Separate chaining

 The lists have to be traversed until the target is found

  comparisons for an unsuccessful search

▪ Where  is the average size of the linked lists

 1 +  / 2 comparisons for a successful search



 If  is less than ½, open addressing and separate 
chaining give similar performance

 As  increases, separate chaining performs better 
than open addressing

 However, separate chaining increases storage 
overhead for the linked list pointers

 It is important to note that in the worst case 
hash table performance can be poor

 That is, if the hash function does not evenly distribute 
data across the table


