Red-black trees

Objectives

- Define the red-black tree properties
- Describe and implement rotations
- Implement red-black tree insertion
- Implement red-black tree removal

Red-black tree algorithms derived from material in *Introduction to Algorithms*, *Cormen*, *Leiserson* and *Rivest*

Binary Search Trees – Performance

- Insertion and removal from BSTs is O(*height*)
- What is the height of a BST?
 - If the tree is balanced:
 O(logn)
 - If the tree is very unbalanced: O(n)

Balanced Binary Search Trees

- Define a balanced binary tree as one where
 - There is no path from the root to a leaf that is more than twice as long as any other such path
 - The height of such a tree is O(logn)
- Guaranteeing that a BST is balanced requires either
 - A more complex structure (2-3 and 2-3-4 trees) or
 - More complex insertion and deletion algorithms (redblack trees)

Red-black Tree Structure

- A red-black tree is a balanced BST
- Each node has an extra colour field which is
 - red or black
 - Usually represented as a boolean isBlack
- Nodes have an additional pointer to their parent
- A node's *null* child pointers are treated as if they were black nodes
 - These null children are *imaginary* nodes so are not allocated space
 - And are always coloured black

Red-black Tree Nodes

- Red-black trees are reference structures
- Nodes contain data, three pointers to nodes, and the node's colour

Red-black Tree Properties

- 1. Every node is either **red** or **black**
- 2. Every leaf is **black**
 - Leaves refers to the *imaginary* nodes
 - i.e. every *null child* of a node is considered to be a black leaf
- 3. If a node is **red** both its children *must* be **black**
- 4. Every path from a node to a leaf contains the same number of *black* nodes
- 5. The root is **black** for convenience

Red-black Tree Height

- The black height of a node, bh(v), is the number of black nodes on a path from v to a null black child
 - Without counting v itself
 - Property 4 every path from a node to a leaf contains the same number of black nodes
- The height of a node, h(v), is the number of nodes on the longest path from v to a leaf
 - Without counting v itself
 - Property 3 a red node's children must be black
 - So $h(v) \leq 2(bh(v))$

Balanced Trees

- It can be shown that a tree with the red-black structure is balanced
 - A balanced tree has no path from the root to a leaf that is more than twice as long as any other such path
- Assume that a tree has n internal nodes
 - An internal node is a non-leaf node, and the leaf nodes are imaginary nodes so n is the number of actual nodes
 - A red-black tree has $\geq 2^{bh} 1$ internal (real) nodes
 - Can be proven by induction (e.g. Algorithms, Cormen et al)
 - But consider that a *perfect* tree has 2^{h+1} leaves, bh must be less than or equal to h, and that 2^{h+1} = 2^h + 2^h

Red-black Tree Height

- Claim: a red-black tree has height, $h \le 2*\log(n+1)$
 - 1. $n \ge 2^{bh} 1$ from claim on previous slide
 - 2. $bh \ge h \mid 2 \text{ red nodes must have black children}$
 - 3. $n \ge 2^{h/2} 1$ replace bh in 1 with h
 - 4. $\log(n + 1) \ge h / 2 \log_2 of both sides of 3, add 1$
 - 5. $2*\log(n + 1) \ge h$ multiply both sides of 4 by 2
 - 6. $h \le 2*\log(n + 1)$ reverse 5
- Note that 2*log(n+1) is O(log(n))
 - If insertion and removal are O(*height*) they are O(log(n))

Rotations

- An item must be inserted into a red-black tree at the correct position
- The shape of a tree is determined by
 - The values of the items inserted into the tree
 - The order in which those values are inserted
- This suggests that there is more than one tree (shape) that can contain the same values
- A tree's shape can be altered by *rotation* while still preserving the *bst* property

Left Rotation

Right Rotation

Left rotation of 32 (referred to as x)

Create a pointer to x's right child

John Edgar

Left rotation of 32 (complete)

Make temp the new root

Left Rotation Code

Red-black Tree Insertion

- Insert as for a *bst* and make the new node red
 - The only property that can be violated is that both a red node's children are black (it's parent may be red)
- If this is the case try to fix it by colouring the new node red and making it's parent and uncle black
 - Which only works if *both* were red
 - As otherwise the equal bh property will be violated
- If changing the colours doesn't work the tree must be rotated
 - Which also entails changing some colours

BST Insertion Algorithm

where x is the new node rbInsert(x) calls the normal bst insert method bstInsert(x) x.colour = rediterates until the root or a black parent is reached while (x != root and x.p.colour == red) if (x.p == x.p.p.left) x's parent is a left child y = x.p.p.right //"uncle" of x if (y.colour == red) //same as x.p x.p.colour = black y and x's parent are both red so they can be made y.colour = black black, and x's grandparent can be made red, then x.p.p = redmake x the grandparent and repeat x = x.p.pelse //y.colour == black if (x == x.p.right) x = x.pleft rotate(x) x's grandparent must be black, so arrange x and x.p.colour = black parent in a straight line, then rotate x's grandparent x.p.p.colour = red to re-balance the tree, and fix the colours right rotate(x.p.p) else ... //symmetric to if one important note: in this presentation null children are just end while treated as black nodes, in an implementation they would have root.colour = black to be explicitly tested for since, being null, they do not have

an *isBlack* attribute (or any other attribute)

red-black Tree Removal

- Modifies the standard *bst* removal algorithm slightly
 - If the removed node is be replaced by its predecessor replace its data, rather than the entire node
 - The node's colour remains the same
 - Then remove the predecessor

If the target node had two children the predecessor is removed

- If the removed node was black then *fix* the tree
 - The removed node's child is passed to the tree fix algorithm
 - This child may be a (black) imaginary (null) child
 - In practice the removed node's child, its parent and whether the removed node was a left or a right child is required

Fixing a red-black Tree

- Tree-fix colours its node parameter, x, black
 - This corrects the violation to the black height property caused by removing a black node
 - If x used to be red it is now black and the tree is fixed
- If x was black then it becomes "doubly black"
 - Violating the property that nodes are red or black
 - The extra black colour is pushed up the tree until
 - A red node is reached, when it is made black
 - The root node is reached or
 - The tree can be rotated and re-coloured to fix the problem

Tree Fix Summary

- The algorithm to fix a red-black tree after deletion has four cases
 - Colours a red sibling of x black, which converts it into one of the other three cases nephews?
 - 2. Both of *x*'s sibling's children are black
 - 3. One of *x*'s sibling's children is black
 - Either x is a left child and y's right sibling is black or x is a right child and y's left sibling is black
 - 4. One of *x*'s sibling's children is black
 - Either x is a left child and y's left sibling is black or x is a right child and y's right sibling is black

BST Removal Algorithm

	z is the node that contains the data to be removed	finding it is not shown
<pre>bRemove(z)</pre>		
<pre>if (z.left == null or z.right == null)</pre>		
y = z //node to be removed		if z has one or no children
else	nnedecesson(z) //on successon	z has two children
if (y left l = null)		
	v = huij	
	y.icit	identify if v's only child is
x =	v.right	right or left
x.p = y.p //detach x from y (if x is not null)		
if (y.p == null) $//y$ is the root		
root = x		
else		
// Attach x to y's parent		
<pre>if (y == y.p.left) //left child</pre>		
y.p.left = x		
else		
y.p.right = x		
if (y != z) //i.e. y has, conceptually, been moved up		
z.da	ta = y.data //replace z with y	y is the predecessor
<pre>if (y.colour == black)</pre>		
rbFi	x(x) //note that x could be null so, in practice	, requires more information

Tree Fix Algorithm

Tree Fix Algorithm


```
rbFix(x) //note that x could be null
```


John Edgar

John Edgar

... //symmetric

else

y.colour = red right_rotate(y) y = x.p.right y.colour = x.p.colour x.p.colour = black y.right.colour = black left_rotate(x.p) x = root

John Edgar

