
Red–black trees

 Define the red-black tree properties
 Describe and implement rotations
 Implement red-black tree insertion
 Implement red-black tree removal

John Edgar 2

Red-black tree algorithms derived from material in Introduction to Algorithms,
Cormen, Leiserson and Rivest

 Insertion and removal from
BSTs is O(height)

 What is the height of a
BST?

▪ If the tree is balanced:
O(logn)

▪ If the tree is very
unbalanced: O(n)

John Edgar 3

61

12

24

43

37

43

24 61

12 37

balanced BST
height = O(logn)

unbalanced BST
height = O(n)

 Define a balanced binary tree as one where

▪ There is no path from the root to a leaf that is more than
twice as long as any other such path

▪ The height of such a tree is O(logn)

 Guaranteeing that a BST is balanced requires either

▪ A more complex structure (2-3 and 2-3-4 trees) or

▪ More complex insertion and deletion algorithms (red-
black trees)

John Edgar 4

 A red-black tree is a balanced BST
 Each node has an extra colour field which is

▪ red or black
▪ Usually represented as a boolean – isBlack

 Nodes have an additional pointer to their parent
 A node’s null child pointers are treated as if they

were black nodes

▪ These null children are imaginary nodes so are not
allocated space

▪ And are always coloured black

John Edgar 5

John Edgar

 Red-black trees are reference structures
 Nodes contain data, three pointers to nodes, and

the node’s colour

6

pointers to Nodes

tree data (varies)

Node* parent Node* left data Node* right isBlack

boolean

1. Every node is either red or black
2. Every leaf is black

▪ Leaves refers to the imaginary nodes
▪ i.e. every null child of a node is considered to be a black leaf

3. If a node is red both its children must be black
4. Every path from a node to a leaf contains the same

number of black nodes
5. The root is black - for convenience

John Edgar 7

 The black height of a node, bh(v), is the number of black
nodes on a path from v to a null black child

▪ Without counting v itself

▪ Property 4 – every path from a node to a leaf contains the same
number of black nodes

 The height of a node, h(v), is the number of nodes on
the longest path from v to a leaf

▪ Without counting v itself

▪ Property 3 – a red node’s children must be black

▪ So h(v) 2(bh(v))

John Edgar 8

 It can be shown that a tree with the red-black
structure is balanced
 A balanced tree has no path from the root to a leaf that is

more than twice as long as any other such path

 Assume that a tree has n internal nodes

▪ An internal node is a non-leaf node, and the leaf nodes are
imaginary nodes so n is the number of actual nodes

▪ A red-black tree has 2bh – 1 internal (real) nodes
▪ Can be proven by induction (e.g. Algorithms, Cormen et al)

▪ But consider that a perfect tree has 2h+1 leaves, bh must be less than
or equal to h, and that 2h+1 = 2h + 2h

John Edgar 9

 Claim: a red-black tree has height, h 2*log(n+1)

1. n 2bh – 1 from claim on previous slide

2. bh h / 2 red nodes must have black children

3. n 2h/2 – 1 replace bh in 1 with h

4. log(n + 1) h / 2 log2 of both sides of 3, add 1

5. 2*log(n + 1) h multiply both sides of 4 by 2

6. h 2*log(n + 1) reverse 5

 Note that 2*log(n+1) is O(log(n))

▪ If insertion and removal are O(height) they are O(log(n))

John Edgar 10

 An item must be inserted into a red-black tree at
the correct position

 The shape of a tree is determined by
▪ The values of the items inserted into the tree

▪ The order in which those values are inserted

 This suggests that there is more than one tree (shape)
that can contain the same values

 A tree’s shape can be altered by rotation while still
preserving the bst property

John Edgar 11

John Edgar 12

x

y z

A DCB

Left rotate (x)

z

y

A

D

C

B

x

John Edgar 13

x

y z

A DCB

z

y

A

D

C

B

x

Right rotate (z)

John Edgar 14

47

8132

13 40

37 44

Left rotation of 32 (referred to as x)

Create a pointer to x’s right child

temp

John Edgar 15

47

8132

13 40

37 44

Left rotation of 32 (referred to as x)

Create a pointer to x’s right child

temp

Make temp’s left child, x’s right child

Detach temp’s left child

John Edgar 16

47

8132

13 40

37 44

Left rotation of 32 (referred to as x)

Create a pointer to x’s right child

temp

Make temp’s left child, x’s right child

Detach temp’s left child

Make x the left child of temp

Make temp the child of x’s parent

John Edgar 17

47

8140

32 44

13 37

Left rotation of 32 (complete)

Right rotation of 47 (referred to as x)

John Edgar 18

47

8132

13 40

7 29 37

Create a pointer to x’s left child

temp

Create a pointer to x’s left child

Right rotation of 47 (referred to as x)

John Edgar 19

47

8132

13 40

7 29 37

temp

Make temp’s right child, x’s left child

Detach temp’s right child

Create a pointer to x’s left child

Right rotation of 47 (referred to as x)

John Edgar 20

47

8132

13 40

7 29 37

temp

Make temp’s right child, x’s left child

Detach temp’s right child

Make x the right child of temp

John Edgar 21

47

32

13

7 4029

37

81

Right rotation of 47

Make temp the new root

temp

leftRotate(x) // x is the node to be rotated
y = x.right
x.right = y.left
// Set nodes’ parent references
// y’s left child
if (y.left != null)

y.left.p = x
// y
y.p = x.p

// Set child reference of x’s parent
if (x.p == null) //x was root

root = y
else if (x == x.p.left) //left child

x.p.left = y
else

x.p.right = y
// Make x y’s left child
y.left = x
x.p = y

John Edgar 22

Notation

.left is left child, .right is right child, .p is parent

47

8132

13 40

37 44

x

y

 Insert as for a bst and make the new node red

▪ The only property that can be violated is that both a red
node’s children are black (it's parent may be red)

 If this is the case try to fix it by colouring the new
node red and making it's parent and uncle black

▪ Which only works if both were red
▪ As otherwise the equal bh property will be violated

 If changing the colours doesn’t work the tree must
be rotated

▪ Which also entails changing some colours

John Edgar 23

x’s parent is a left child

x’s grandparent must be black, so arrange x and
parent in a straight line, then rotate x’s grandparent
to re-balance the tree, and fix the colours

y and x’s parent are both red so they can be made
black, and x’s grandparent can be made red, then
make x the grandparent and repeat

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //”uncle” of x
if (y.colour == red) //same as x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 24

calls the normal bst insert method

where x is the new node

iterates until the root or a black parent is reached

one important note: in this presentation null children are just
treated as black nodes, in an implementation they would have
to be explicitly tested for since, being null, they do not have
an isBlack attribute (or any other attribute)

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 25

47

7132

93

Insert 65

//false

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 26

47

7132

65 93

Insert 65

//false

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 27

47

7132

65 93

Insert 82

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 28

82

47

7132

65 93

Insert 82

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
… //symmetric to else

else
y = x.p.p.left //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.left)

x = x.p
right_rotate(x)

x.p.colour = black
x.p.p.colour = red
left_rotate(x.p.p)

end while
root.colour = black

John Edgar 29

82

47

7132

65 9365

71

93

change nodes’ colours

Insert 82

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 30

65 93

71

82

47

32

Insert 87

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 31

9365

71

82

47

32

87
Insert 87

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 32

9365

71

82

47

32

87
Insert 87

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 33

9365

71

87

47

32

82
Insert 87

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 34

9365

87

47

32

82

71

87

93

change nodes’ colours

Insert 87

rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)

if (x.p == x.p.p.left)
y = x.p.p.right //x’s “uncle”
if (y.colour == red) //like x.p

x.p.colour = black
y.colour = black
x.p.p = red
x = x.p.p

else //y.colour == black
if (x == x.p.right)

x = x.p
left_rotate(x)

x.p.colour = black
x.p.p.colour = red
right_rotate(x.p.p)

else
… //symmetric to if

end while
root.colour = black

John Edgar 35

87

93

65

47

32

82

71

Insert 87

 Modifies the standard bst removal algorithm slightly

▪ If the removed node is be replaced by its predecessor replace its

data, rather than the entire node

▪ The node's colour remains the same

▪ Then remove the predecessor

 If the removed node was black then fix the tree

▪ The removed node’s child is passed to the tree fix algorithm

▪ This child may be a (black) imaginary (null) child

▪ In practice the removed node’s child, its parent and whether the

removed node was a left or a right child is required

John Edgar 36

If the target node had two children
the predecessor is removed

 Tree-fix colours its node parameter, x, black

▪ This corrects the violation to the black height property
caused by removing a black node

▪ If x used to be red it is now black and the tree is fixed

 If x was black then it becomes "doubly black"

▪ Violating the property that nodes are red or black

▪ The extra black colour is pushed up the tree until
▪ A red node is reached, when it is made black

▪ The root node is reached or

▪ The tree can be rotated and re-coloured to fix the problem

John Edgar 37

 The algorithm to fix a red-black tree after deletion
has four cases

1. Colours a red sibling of x black, which converts it into one
of the other three cases

2. Both of x’s sibling’s children are black

3. One of x’s sibling’s children is black
▪ Either x is a left child and y’s right sibling is black or x is a right

child and y’s left sibling is black

4. One of x’s sibling’s children is black
▪ Either x is a left child and y’s left sibling is black or x is a right

child and y’s right sibling is black

John Edgar 38

nephews?

y is the predecessor

identify if y’s only child is
right or left

if z has one or no children

z has two children

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y (if x is not null)
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y has, conceptually, been moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

John Edgar 39

z is the node that contains the data to be removed finding it is not shown

so, in practice, requires more information

rbFix(x)
while (x != root and x.colour = black)

if (x == x.p.left) //x is left child
y = x.p.right //x’s sibling
if (y.colour == red)

y.colour = black
x.p.colour = red //p was black
left_rotate(x.p)
y = x.p.right

if (y.left.colour == black and y.right.colour == black)
y.colour = red
x = x.p //and into while again …

else
if (y.right.colour == black)

y.left.colour = black
y.colour = red
right_rotate(y)
y = x.p.right

y.colour = x.p.colour
x.p.colour = black
y.right.colour = black
left_rotate(x.p)
x = root

else
… //symmetric

rbFix(x)see note

while (x != root and x.colour = black)
if (x == x.p.left) //x is left child

y = x.p.right //x’s sibling
if (y.colour == red)

y.colour = black
x.p.colour = red //x’s parent must have been black since y is red
left_rotate(x.p)
y = x.p.right

if (y.left.colour == black and y.right.colour == black)
y.colour = red
x = x.p //and into while again …

else
…

else
… //symmetric to if

x.colour = black

John Edgar 40

the algorithm is trying to correct the black height
of the tree since a black node has been removed

since we’ve found a node that is red
fix black height by making it black

x

x new y

by making y red this makes the sibling’s subtree the
same black height, so then push the fix up the tree

x y x y

new x

the black height of all nodes is unchanged but x’s sibling is now black

Implementation note: x may be null so 3 parameters
are required: x, x’s parent and whether the removed
node was a left or right child

rbFix(x)
while (x != root and x.colour = black)

if (x == x.p.left) //x is left child
y = x.p.right //x’s sibling
if (y.colour == red)

y.colour = black
x.p.colour = red //p was black
left_rotate(x.p)
y = x.p.right

if (y.left.colour == black and y.right.colour == black)
y.colour = red
x = x.p //and into while again …

else
if (y.right.colour == black)

y.left.colour = black
y.colour = red
right_rotate(y)
y = x.p.right

y.colour = x.p.colour
x.p.colour = black
y.right.colour = black
left_rotate(x.p)
x = root

else
… //symmetric

rbFix(x)
while (x != root and x.colour = black)

if (x == x.p.left) //x is left child
y = x.p.right //x’s sibling
if (y.colour == red)

…
else

if (y.right.colour == black)
y.left.colour = black
y.colour = red
right_rotate(y)
y = x.p.right

y.colour = x.p.colour
x.p.colour = black
y.right.colour = black
left_rotate(x.p)
x = root

else
… //symmetric to if

x.colour = black

John Edgar 41

x

x

x y

y

x new y

makes x’s sibling black or pushes problem up tree

makes x’s sibling’s
right child red

fixed!

John Edgar 42

87

93

65

47

32

82

71

Remove 87

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y; if not null
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

John Edgar 43

87

93

65

47

32

82

71

Replace data with predecessor

Predecessor is red so no violation

82

Remove 87

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y; if not null
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

John Edgar 44

87

93

65

47

32

82

71

51

Remove 71

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y; if not null
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

John Edgar 45

87

93

65

47

32

82

71

51

Replace with predecessor

65Attach predecessor’s child

Remove 71

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y; if not null
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

Fix tree – make 51 black

John Edgar 46

87

93

47

32

825151

Remove 71

Replace with predecessor

Attach predecessor’s child

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y; if not null
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

rbFix(x)
while (x != root and x.colour = black)

… //colouring, rotations etc.
x.colour = black

//false

65

John Edgar 47

87

93

65

47

32

82

71

Remove 32

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y; if not null
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

John Edgar 48

87

93

65

47

32

82

71

x

Identify node’s left child, x

Attach x to target’s parent

Remove target node
x

Remove 32

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y; if not null
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

John Edgar 49

87

93

65

47

82

71x

Remove 32

Identify node’s left child, x

Attach x to target’s parent

Remove target node

rbRemove(z)
if (z.left == null or z.right == null)

y = z //node to be removed
else

y = predecessor(z) //or successor
if (y.left != null)

x = y.left
else

x = y.right
x.p = y.p //detach x from y; if not null
if (y.p == null) //y is the root

root = x
else

// Attach x to y’s parent
if (y == y.p.left) //left child

y.p.left = x
else

y.p.right = x
if (y != z) //i.e. y moved up

z.data = y.data //replace z with y
if (y.colour == black)

rbFix(x) //note that x could be null

Fix the tree (passing x)

4747

John Edgar 50

Set y black, y’s parent red

87

93

65

82

71x
y

71

Identify y, x’s sibling

Left rotate x’s parent

Calling TreeFix on xRemove 32

rbFix(x)
while (x != root and x.colour = black)

if (x == x.p.left) //x is left child
y = x.p.right //x’s sibling
if (y.colour == red)

y.colour = black
x.p.colour = red //p was black
left_rotate(x.p)
y = x.p.right

if (y.left.colour == black and y.right.colour == black)
y.colour = red
x = x.p //and into while again …

else
if (y.right.colour == black)

y.left.colour = black
y.colour = red
right_rotate(y)
y = x.p.right

y.colour = x.p.colour
x.p.colour = black
y.right.colour = black
left_rotate(x.p)
x = root

else
… //symmetric

Left rotate x’s parent

Set y black, y’s parent red

Identify y, x’s sibling

John Edgar 51

9382

71

8747

x

y

65

new y

Identify y: x’s new sibling

Remove 32

rbFix(x)
while (x != root and x.colour = black)

if (x == x.p.left) //x is left child
y = x.p.right //x’s sibling
if (y.colour == red)

y.colour = black
x.p.colour = red //p was black
left_rotate(x.p)
y = x.p.right

if (y.left.colour == black and y.right.colour == black)
y.colour = red
x = x.p //and into while again …

else
if (y.right.colour == black)

y.left.colour = black
y.colour = red
right_rotate(y)
y = x.p.right

y.colour = x.p.colour
x.p.colour = black
y.right.colour = black
left_rotate(x.p)
x = root

else
… //symmetric

6565

John Edgar 52

9382

71

8747

x
y

new x

Colour y red

Assign x it’s parent
and repeat while

Remove 32

rbFix(x)
while (x != root and x.colour = black)

if (x == x.p.left) //x is left child
y = x.p.right //x’s sibling
if (y.colour == red)

y.colour = black
x.p.colour = red //p was black
left_rotate(x.p)
y = x.p.right

if (y.left.colour == black and y.right.colour == black)
y.colour = red
x = x.p //and into while again …

else
if (y.right.colour == black)

y.left.colour = black
y.colour = red
right_rotate(y)
y = x.p.right

y.colour = x.p.colour
x.p.colour = black
y.right.colour = black
left_rotate(x.p)
x = root

else
… //symmetric

Left rotate x’s parent

Set y black, y’s parent red

Identify y, x’s sibling

Identify y: x’s new sibling

John Edgar 53

9382

71

8747

x

47

Colour x black

Remove 32

65

rbFix(x)
while (x != root and x.colour = black)

… //colouring, rotations etc.
x.colour = black

//false

