Red–black trees

CMPT 225
Objectives

- Define the **red**-black tree properties
- Describe and implement rotations
- Implement **red**-black tree insertion
- Implement **red**-black tree removal

Red-black tree algorithms derived from material in *Introduction to Algorithms*, Cormen, Leiserson and Rivest
Binary Search Trees – Performance

- Insertion and removal from BSTs is $O(\text{height})$
- What is the height of a BST?
 - If the tree is balanced: $O(\log n)$
 - If the tree is very unbalanced: $O(n)$
Define a balanced binary tree as one where:
- There is no path from the root to a leaf that is more than twice as long as any other such path.
- The height of such a tree is $O(\log n)$.

Guaranteeing that a BST is balanced requires either:
- A more complex structure (2-3 and 2-3-4 trees) or
- More complex insertion and deletion algorithms (red-black trees).
Red-black Tree Structure

- A red-black tree is a balanced BST
- Each node has an extra colour field which is
 - **red** or **black**
 - Usually represented as a boolean – **isBlack**
- Nodes have an additional pointer to their parent
- A node’s *null* child pointers are treated as if they were black nodes
 - These null children are *imaginary* nodes so are not allocated space
 - And are always coloured black
Red-black Tree Nodes

- Red-black trees are reference structures
- Nodes contain data, three pointers to nodes, and the node’s colour
Red-black Tree Properties

1. Every node is either red or black
2. Every leaf is black
 - Leaves refers to the imaginary nodes
 - i.e. every null child of a node is considered to be a black leaf
3. If a node is red both its children must be black
4. Every path from a node to a leaf contains the same number of black nodes
5. The root is black - for convenience
Red-black Tree Height

- The black height of a node, $bh(v)$, is the number of black nodes on a path from v to a null black child
 - Without counting v itself
 - Property 4 – every path from a node to a leaf contains the same number of black nodes
- The height of a node, $h(v)$, is the number of nodes on the longest path from v to a leaf
 - Without counting v itself
 - Property 3 – a red node’s children must be black
 - So $h(v) \leq 2(bh(v))$
Balanced Trees

- It can be shown that a tree with the red-black structure is balanced
 - A balanced tree has no path from the root to a leaf that is more than twice as long as any other such path
- Assume that a tree has n internal nodes
 - An internal node is a non-leaf node, and the leaf nodes are imaginary nodes so n is the number of actual nodes
 - A red-black tree has $\geq 2^{bh} - 1$ internal (real) nodes
 - Can be proven by induction (e.g. Algorithms, Cormen et al)
 - But consider that a perfect tree has 2^{h+1} leaves, bh must be less than or equal to h, and that $2^{h+1} = 2^h + 2^h$
Claim: a red-black tree has height, \(h \leq 2 \times \log(n+1) \)

1. \(n \geq 2^{bh} - 1 \) from claim on previous slide
2. \(bh \geq h / 2 \) red nodes must have black children
3. \(n \geq 2^{h/2} - 1 \) replace \(bh \) in 1 with \(h \)
4. \(\log(n + 1) \geq h / 2 \) \(\log_2 \) of both sides of 3, add 1
5. \(2 \times \log(n + 1) \geq h \) multiply both sides of 4 by 2
6. \(h \leq 2 \times \log(n + 1) \) reverse 5

Note that \(2 \times \log(n+1) \) is \(O(\log(n)) \)

- If insertion and removal are \(O(height) \) they are \(O(\log(n)) \)
Rotations

- An item must be inserted into a red-black tree at the correct position.
- The shape of a tree is determined by:
 - The values of the items inserted into the tree
 - The order in which those values are inserted
- This suggests that there is more than one tree (shape) that can contain the same values.
- A tree’s shape can be altered by rotation while still preserving the bst property.
Left Rotation

Left rotate (x)
Right Rotation

Right rotate (z)
Left rotation of 32 (referred to as x)

Create a pointer to x’s right child
Left rotation of 32 (referred to as x)

Create a pointer to x’s right child

Make temp’s left child, x’s right child

Detach temp’s left child
Left Rotation Example

- Left rotation of 32 (referred to as x)
- Create a pointer to x’s right child
- Make temp’s left child, x’s right child
- Detach temp’s left child
- Make x the left child of temp
- Make temp the child of x’s parent
Left Rotation Example

Left rotation of 32 (complete)
Right Rotation Example

Right rotation of 47 (referred to as x)

Create a pointer to x’s left child

Create a pointer to temp
Right rotation of 47 (referred to as x)
Create a pointer to x’s left child
Make temp’s right child, x’s left child
Detach temp’s right child
Right Rotation Example

Right rotation of 47 (referred to as x)
Create a pointer to x’s left child
Make temp’s right child, x’s left child
Detach temp’s right child
Make x the right child of temp
Right Rotation Example

- Right rotation of 47
- Make temp the new root

Diagram:

```
    32
   /  
  13   47
 /     / 
7     29 40
     /     /
    37   81
```

```
John Edgar
```
leftRotate(x) // x is the node to be rotated
 y = x.right
 x.right = y.left
 // Set nodes’ parent references
 // y’s left child
 if (y.left != null)
 y.left.p = x
 // y
 y.p = x.p

 // Set child reference of x’s parent
 if (x.p == null) //x was root
 root = y
 else if (x == x.p.left) //left child
 x.p.left = y
 else
 x.p.right = y
 // Make x y’s left child
 y.left = x
 x.p = y

Notation: .left is left child, .right is right child, .p is parent
Red-black Tree Insertion

- Insert as for a bst and make the new node red
 - The only property that can be violated is that both a red node’s children are black (it's parent may be red)
- If this is the case try to fix it by colouring the new node red and making it's parent and uncle black
 - Which only works if both were red
 - As otherwise the equal bh property will be violated
- If changing the colours doesn’t work the tree must be rotated
 - Which also entails changing some colours
BST Insertion Algorithm

where \(x \) is the new node

\[
\begin{align*}
\text{rbInsert}(x) & \quad \text{calls the normal bst insert method} \\
\text{bstInsert}(x) & \quad \text{iterates until the root or a black parent is reached} \\
\text{x.colour} & = \text{red} \\
\text{while} & \quad (x \neq \text{root} \text{ and } x.p.\text{colour} == \text{red}) \\
\text{if} & \quad (x.p == x.p.p.\text{left}) \\
& \quad \text{y} = x.p.p.\text{right} \quad \text{"uncle" of x} \\
& \quad \text{if} \quad (y.\text{colour} == \text{red}) \quad \text{"same as x.p"} \\
& \quad \quad \text{x.p.\text{colour}} = \text{black} \\
& \quad \quad \text{y.\text{colour}} = \text{black} \\
& \quad \quad \text{x.p.p} = \text{red} \\
& \quad \quad \text{x} = x.p.p \\
\text{else} & \quad \text{"y.\text{colour} == \text{black"} \\
& \quad \quad \text{if} \quad (x == x.p.\text{right}) \\
& \quad \quad \quad \text{x} = x.p \\
& \quad \quad \quad \text{left_rotate(x)} \\
& \quad \quad \quad \text{x.p.\text{colour}} = \text{black} \\
& \quad \quad \quad \text{x.p.p.\text{colour}} = \text{red} \\
& \quad \quad \quad \text{right_rotate(x.p.p)} \\
\text{else} & \quad \text{... \"symmetric to if"} \\
\text{end while} \\
\text{root.\text{colour}} & = \text{black}
\end{align*}
\]

one important note: in this presentation null children are just treated as black nodes, in an implementation they would have to be explicitly tested for since, being null, they do not have an \text{isBlack} attribute (or any other attribute)
rbInsert(x)
 bstInsert(x)
 x.colour = red //false
 while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right //x’s “uncle”
 if (y.colour == red) //Like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else //y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
 else
 ... //symmetric to if
 end while
root.colour = black
rbInsert(x)
 bstInsert(x)
 x.colour = red //false
 while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right //x’s “uncle”
 if (y.colour == red) //like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else //y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
 else
 ... //symmetric to if
 end while
 root.colour = black

Insert 65
rbInsert(x)
 bstInsert(x)
 x.colour = red
 while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right //x’s “uncle”
 if (y.colour == red) //like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else //y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
 else
 ...
 //symmetric to if
 end while
root.colour = black

Insert 82
rbInsert(x)
 bstInsert(x)
 x.colour = red
 while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right //x's "uncle"
 if (y.colour == red) //like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else //y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
 else
 ... //symmetric to if
 end while
 root.colour = black

Insert 82
rbInsert(x)
 bstInsert(x)
 x.colour = red
 while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 // symmetric to else
 else
 y = x.p.p.left // x's "uncle"
 if (y.colour == red) // like x
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else // y.colour == black
 if (x == x.p.left)
 x = x.p
 right_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 left_rotate(x.p.p)
 end while
 root.colour = black

Insert 82
rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right //x's "uncle"
 if (y.colour == red) //like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else //y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
 else
 ...
 //symmetric to if
end while
root.colour = black

Insert 87
rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right //x’s “uncle”
 if (y.colour == red) //like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else //y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
else //symmetric to if
end while
root.colour = black

Insert 87

John Edgar
rbInsert(x)
 bstInsert(x)
 x.colour = red
 while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right //x’s “uncle”
 if (y.colour == red) //like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else //y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
 end while
root.colour = black
Insert 87
rbInsert(x)
bstInsert(x)
 x.colour = red
while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right // x's "uncle"
 if (y.colour == red) // like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else // y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
 else
 ... // symmetric to if
end while
root.colour = black
rbInsert(x)
bstInsert(x)
x.colour = red
while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right // x’s “uncle”
 if (y.colour == red) // like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else // y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
else
 ... // symmetric to if
end while
root.colour = black
rbInsert(x)
 bstInsert(x)
 x.colour = red
 while (x != root and x.p.colour == red)
 if (x.p == x.p.p.left)
 y = x.p.p.right // x’s “uncle”
 if (y.colour == red) // like x.p
 x.p.colour = black
 y.colour = black
 x.p.p = red
 x = x.p.p
 else // y.colour == black
 if (x == x.p.right)
 x = x.p
 left_rotate(x)
 x.p.colour = black
 x.p.p.colour = red
 right_rotate(x.p.p)
 else // symmetric to if
 end while
 root.colour = black

Insert 87
red-black Tree Removal

- Modifies the standard bst removal algorithm slightly
 - If the removed node is be replaced by its predecessor replace its data, rather than the entire node
 - The node's colour remains the same
 - Then remove the predecessor
- If the removed node was black then fix the tree
 - The removed node’s child is passed to the tree fix algorithm
 - This child may be a (black) imaginary (null) child
 - In practice the removed node’s child, its parent and whether the removed node was a left or a right child is required
Fixing a red-black Tree

- Tree-fix colours its node parameter, x, black
 - This corrects the violation to the black height property caused by removing a black node
 - If x used to be red it is now black and the tree is fixed
- If x was black then it becomes "doubly black"
 - Violating the property that nodes are red or black
 - The extra black colour is pushed up the tree until
 - A red node is reached, when it is made black
 - The root node is reached or
 - The tree can be rotated and re-coloured to fix the problem
The algorithm to fix a red-black tree after deletion has four cases

1. Colours a red sibling of x black, which converts it into one of the other three cases

2. Both of x’s sibling’s children are black

3. One of x’s sibling’s children is black
 - Either x is a left child and y’s right sibling is black or x is a right child and y’s left sibling is black

4. One of x’s sibling’s children is black
 - Either x is a left child and y’s left sibling is black or x is a right child and y’s right sibling is black
 BST Removal Algorithm

```
rhRemove(z)  
if (z.left == null or z.right == null) 
  y = z //node to be removed  
else  
  y = predecessor(z) //or successor  
if (y.left != null) 
  x = y.left  
else 
  x = y.right  
x.p = y.p //detach x from y (if x is not null)  
if (y.p == null) //y is the root  
  root = x  
else 
  // Attach x to y’s parent  
  if (y == y.p.left) //left child  
    y.p.left = x  
  else  
    y.p.right = x  
if (y != z) //i.e. y has, conceptually, been moved up  
  z.data = y.data //replace z with y  
if (y.colour == black)  
  rbFix(x) //note that x could be null  
```
```plaintext
rbFix(x)

while (x != root and x.colour = black)
    if (x == x.p.left) //x is left child
        y = x.p.right //x’s sibling
        if (y.colour == red)
            y.colour = black
            x.p.colour = red
            left_rotate(x.p)
            y = x.p.right
        else
            ...
else
    ...
//symmetric to if
x.colour = black
```

the algorithm is trying to correct the black height of the tree since a black node has been removed.

the black height of all nodes is unchanged but x’s sibling is now black.

by making y red this makes the sibling’s subtree the same black height, so then push the fix up the tree.

Implementation note: x may be null so 3 parameters are required: x, x’s parent and whether the removed node was a left or right child.

Since we’ve found a node that is red fix black height by making it black.

John Edgar
rbFix(x)
while (x != root and x.colour = black)
 if (x == x.p.left) //x is left child
 y = x.p.right //x’s sibling
 if (y.colour == red)
 ...
 else
 if (y.right.colour == black)
 y.left.colour = black
 y.colour = red
 right_rotate(y)
 y = x.p.right
 y.colour = x.p.colour
 x.p.colour = black
 y.right.colour = black
 left_rotate(x.p)
 x = root
else
 ...
 //symmetric to if
x.colour = black
Removal Example 1

Remove 87

```
rbRemove(z)
  if (z.left == null or z.right == null)
    y = z //node to be removed
  else
    y = predecessor(z) //or successor
  if (y.left != null)
    x = y.left
  else
    x = y.right
  x.p = y.p //detach x from y; if not null
  if (y.p == null) //y is the root
    root = x
  else //Attach x to y's parent
    if (y == y.p.left) //left child
      y.p.left = x
    else
      y.p.right = x
  if (y != z) //i.e. y moved up
    z.data = y.data //replace z with y
  if (y.colour == black)
    rbFix(x) //note that x could be null
```
Remove 87

rbRemove(z)
 if (z.left == null or z.right == null)
 y = z //node to be removed
 else
 y = predecessor(z) //or successor
 if (y.left != null)
 x = y.left
 else
 x = y.right
 x.p = y.p //detach x from y; if not null
 if (y.p == null) //y is the root
 root = x
 else //Attach x to y’s parent
 if (y == y.p.left) //left child
 y.p.left = x
 else
 y.p.right = x
 if (y != z) //i.e. y moved up
 z.data = y.data //replace z with y
 if (y.colour == black)
 rbFix(x) //note that x could be null

Replace data with predecessor
Predecessor is red so no violation
Remove 71

```
rbRemove(z)
    if (z.left == null or z.right == null)
        y = z // node to be removed
    else
        y = predecessor(z) // or successor
    if (y.left != null)
        x = y.left
    else
        x = y.right
    x.p = y.p // detach x from y; if not null
    if (y.p == null) // y is the root
        root = x
    else // Attach x to y's parent
        if (y == y.p.left) // left child
            y.p.left = x
        else
            y.p.right = x
    if (y != z) // i.e. y moved up
        z.data = y.data // replace z with y
    if (y.colour == black)
        rbFix(x) // note that x could be null
```
Remove 71

Replace with predecessor

Attach predecessor’s child

```java
rBRemove(z)
    if (z.left == null or z.right == null)
        y = z //node to be removed
    else
        y = predecessor(z) //or successor
    if (y.left != null)
        x = y.left
    else
        x = y.right
    x.p = y.p //detach x from y; if not null
    if (y.p == null) //y is the root
        root = x
    else //Attach x to y’s parent
        if (y == y.p.left) //left child
            y.p.left = x
        else
            y.p.right = x
    if (y != z) //i.e. y moved up
        z.data = y.data //replace z with y
    if (y.colour == black)
        rbFix(x) //note that x could be null
```
Remove 71
Replace with predecessor
Attach predecessor’s child
Fix tree – make 51 black

```
rbRemove(z)
  if (z.left == null or z.right == null)
    y = z // node to be removed
  else
    y = predecessor(z) // or successor
  if (y.left != null)
    x = y.left
  else
    x = y.right
  x.p = y.p // detach x from y; if not null
  if (y.p == null) // y is the root
    root = x
  else // attach x to y's parent
    if (y == y.p.left) // left child
      y.p.left = x
    else
      y.p.right = x
  if (y != z) // i.e. y moved up
    z.data = y.data // replace z with y
  if (y.colour == black)
    rbFix(x) // note that x could be null
```

```
rbFix(x)
  while (x != root and x.colour == black)
    // colouring, rotations etc.
    x.colour = black
```
Remove 32

rbRemove(z)
 if (z.left == null or z.right == null)
 y = z //node to be removed
 else
 y = predecessor(z) //or successor
 if (y.left != null)
 x = y.left
 else
 x = y.right
 x.p = y.p //detach x from y; if not null
 if (y.p == null) //y is the root
 root = x
 else // Attach x to y’s parent
 if (y == y.p.left) //left child
 y.p.left = x
 else
 y.p.right = x
 if (y != z) //i.e. y moved up
 z.data = y.data //replace z with y
 if (y.colour == black)
 rbFix(x) //note that x could be null
Remove 32

Identify node’s left child, x

Remove target node

Attach x to target’s parent

```java
//Remove data from node

rbRemove(z)
    if (z.left == null or z.right == null)
        y = z //node to be removed
    else
        y = predecessor(z) //or successor
    if (y.left != null)
        x = y.left
    else
        x = y.right
    x.p = y.p //detach x from y; if not null
    if (y.p == null) //y is the root
        root = x
    else // Attach x to y’s parent
        if (y.p == left)
            y.p.left = x
        else
            y.p.right = x
    if (y != z) //i.e. y moved up
        z.data = y.data //replace z with y
    if (y.colour == black)
        rbFix(x) //note that x could be null
```
Remove 32

Identify node’s left child, x

Remove target node

Attach x to target’s parent

```java
rbRemove(z)
   if (z.left == null || z.right == null)
      y = z // node to be removed
   else
      y = predecessor(z) // or successor
   if (y.left != null)
      x = y.left
   else
      x = y.right
   x.p = y.p // detach x from y; if not null
   if (y.p == null)
      root = x
   else // Attach x to y’s parent
      if (y == y.p.left) // left child
         y.p.left = x
      else
         y.p.right = x
   if (y != z) // i.e. y moved up
      z.data = y.data // replace z with y
   if (y.colour == black)
      rbFix(x) // note that x could be null
```
Remove 32
Identify y, x’s sibling
Set y black, y’s parent red
Left rotate x’s parent

Calling TreeFix on x

rbFix(x)
while (x != root and x.colour = black)
 if (x == x.p.left) // x is left child
 y = x.p.right // x’s sibling
 if (y.colour == red)
 y.colour = black
 x.p.colour = red // p was black
 left_rotate(x.p)
 y = x.p.right
 if (y.left.colour == black and y.right.colour == black)
 y.colour = red
 x = x.p // and into while again ...
 else
 if (y.right.colour == black)
 y.left.colour = black
 y.colour = red
 right_rotate(y)
 y = x.p.right
 y.colour = x.p.colour
 x.p.colour = black
 y.right.colour = black
 left_rotate(x.p)
 x = root
 else
 .. // symmetric
Remove 32

Identify y, x’s sibling

Set y black, y’s parent red

Left rotate x’s parent

Identify y: x’s new sibling

```plaintext
rbFix(x)
while (x != root and x.colour = black)
  if (x == x.p.left) // x is left child
    y = x.p.right // x’s sibling
    if (y.colour == red)
      y.colour = black
      x.p.colour = red // p was black
      left_rotate(x.p)
      y = x.p.right
  else if (y.right.colour == black)
    y.left.colour = black
    y.colour = red
    right_rotate(y)
    y = x.p.right
    y.colour = x.p.colour
  right_rotate(x.p)
  x = root
else
  // symmetric
```
Remove 32

Identify y, x’s sibling

Set y black, y’s parent red

Left rotate x’s parent

Identify y: x’s new sibling

rbFix(x)
 while (x != root and x.colour = black)
 if (x == x.p.left) //x is left child
 y = x.p.right //x’s sibling
 if (y.colour == red)
 y.colour = black
 x.p.colour = red //p was black
 left_rotate(x.p)
 y = x.p.right
 else
 if (y.left.colour == black and y.right.colour == black)
 y.colour = red
 x = x.p //and into while again …
 else
 if (y.right.colour == black)
 y.left.colour = black
 y.colour = red
 right_rotate(y)
 y = y.p.right
 y.colour = x.p.colour
 x.p.colour = black
 y.right.colour = black
 left_rotate(x.p)
 x = root
 else
 .. //symmetric

Colour y red

Assign x it’s parent and repeat while
Remove 32

Colour x black

```
rBFix(x)  //false
  while (x != root and x.colour = black)
     //colouring, rotations etc.
     x.colour = black
```