Binary Search Trees

Objectives

- Understand tree terminology
- Understand and implement tree traversals
- Define the binary search tree property
- Implement binary search trees
- Implement the TreeSort algorithm

Tree Terminology

- A set of nodes (or vertices) with a single starting point
 - called the root
- Each node is connected by an edge to another node
- A tree is a connected graph
 - There is a path to every node in the tree
 - A tree has one less edge than the number of nodes

ls it a Tree?

Tree Relationships

- Node v is said to be a child of u, and u the parent of v if
 - There is an edge between the nodes u and v, and
 - *u* is above *v* in the tree,
- This relationship can be generalized
 - E and F are *descendants* of A
 - D and A are *ancestors* of G
 - B, C and D are siblings
 - F and G are?

More Tree Terminology

- A *leaf* is a node with no children
- A path is a sequence of nodes v₁ ... v_n
 - where v_i is a parent of v_{i+1} ($1 \le i \le n$)
- A subtree is any node in the tree along with all of its descendants
- A *binary tree* is a tree with at most two children per node
 - The children are referred to as *left* and *right*
 - We can also refer to left and right subtrees

Tree Terminology Example

Binary Tree Terminology

Measuring Trees

- The *height* of a node v is the length of the longest path from v to a leaf
 - The height of the tree is the height of the root
- The *depth* of a node v is the length of the path from v to the root
 - This is also referred to as the *level* of a node
- Note that there is a slightly different formulation of the height of a tree
 - Where the height of a tree is said to be the number of different *levels* of nodes in the tree (including the root)

Height of a Binary Tree

Perfect Binary Trees

- A binary tree is *perfect*, if
 - No node has only one child
 - And all the leaves have the same depth
- A perfect binary tree of height *h* has
 - 2^{h+1}-1 nodes, of which 2^h are leaves
- Perfect trees are also complete

Nodes in a Perfect Tree

- Each level doubles the number of nodes
 - Level 1 has 2 nodes (2¹)
 - Level 2 has 4 nodes (2²) or 2 times the number in Level 1
- Therefore a tree with h levels has 2^{h+1} 1 nodes

Complete Binary Trees

- A binary tree is *complete* if
 - The leaves are on at most two different levels,
 - The second to bottom level is completely filled in and
 - The leaves on the bottom level are as far to the left as possible

Balanced Binary Trees

A binary tree is *balanced* if

- Leaves are all about the same distance from the root
- The exact specification varies
- Sometimes trees are balanced by comparing the height of nodes
 - e.g. the height of a node's right subtree is at most one different from the height of its left subtree
- Sometimes a tree's height is compared to the number of nodes
 - e.g. red-black trees

Balanced Binary Trees

Unbalanced Binary Trees

Tree Traversals

Binary Tree Traversals

- A traversal algorithm for a binary tree visits each node in the tree
 - Typically, it will do something while visiting each node!
- Traversal algorithms are naturally recursive
- There are three traversal methods
 - Inorder
 - Preorder
 - Postorder

InOrder Traversal Algorithm

The visit function would do whatever the purpose of the traversal is, for example print the data in the node

PreOrder Traversal

PostOrder Traversal

Binary Search Trees

Binary Tree Implementation

- The binary tree ADT can be implemented using different data structures
 - Reference structures (similar to linked lists)
 - Arrays
- Example implementations
 - Binary search trees (references)
 - Red black trees (references again)
 - Heaps (arrays) not a binary search tree
 - B trees (arrays again) not a *binary* search tree

Problem: Accessing Sorted Data

- Consider maintaining data in some order
 - The data is to be frequently searched on the sort key e.g. a dictionary
- Possible solutions might be:
 - A sorted array
 - Access in O(logn) using binary search
 - Insertion and deletion in linear time
 - An ordered linked list
 - Access, insertion and deletion in linear time

Dictionary Operations

- The data structure should be able to perform all these operations efficiently
 - Create an empty dictionary
 - Insert
 - Delete
 - Look up
- The insert, delete and look up operations should be performed in at most O(logn) time

Binary Search Tree Property

- A binary search tree is a binary tree with a special property
 - For all nodes in the tree:
 - All nodes in a left subtree have labels *less* than the label of the subtree's root
 - All nodes in a right subtree have labels greater than or equal to the label of the subtree's root
- Binary search trees are fully ordered

BST Example

BST InOrder Traversal

Binary Search Tree Search

BST Implementation

- Binary search trees can be implemented using a reference structure
- Tree nodes contain data and two pointers to nodes

BST Search

- To find a value in a BST search from the root node:
 - If the target is less than the value in the node search its left subtree
 - If the target is greater than the value in the node search its right subtree
 - Otherwise return true, (or a pointer to the data, or ...)
- How many comparisons?
 - One for each node on the path
 - Worst case: height of the tree + 1

BST Search Algorithm

called by a helper method like this: *search(root, target)*

BST Insertion

BST Insertion

- The BST property must hold after insertion
- Therefore the new node must be inserted in the correct position
 - This position is found by performing a search
 - If the search ends at the NULL left child of a node make its left child refer to the new node
 - If the search ends at the NULL right child of a node make its right child refer to the new node
- The cost is about the same as the cost for the search algorithm, O(*height*)

BST Insertion Example

BST Removal

BST Removal

- After removal the BST property must hold
- Removal is not as straightforward as search or insertion
 - With insertion the strategy is to insert a new leaf
 - Which avoids changing the internal structure of the tree
 - This is not possible with removal
 - Since the removed node's position is not chosen by the algorithm
- There are a number of different cases to be considered

BST Removal Cases

- The node to be removed has no children
 - Remove it (assigning NULL to its parent's reference)
- The node to be removed has one child
 - Replace the node with its subtree
- The node to be removed has two children

· · · ·

BST Removal – Target is a Leaf

John Edgar

BST Removal – Target Has One Child

BST Removal – Target Has One Child

John Edgar

Looking At the Next Node

- One of the issues with implementing a BST is the necessity to look at both children
 - And, just like a linked list, *look ahead* for insertion and removal
 - And check that a node is null before accessing its member variables
- Consider removing a node with one child in more detail

Looking Ahead

remove 59

Step 1 - we need to find the node to remove and its parent

it's useful to know if nd is a left or right child

```
while (nd != target)
if (nd == NULL)
    return
if (target < nd->data)
    parent = nd
    nd = nd->left
    isLeftChild = true
else
    parent = nd
    nd = nd->right
    isLeftChild = false
```


Left or Right?

John Edgar

Removing a Node With 2 Children

- The most difficult case is when the node to be removed has two children
 - The strategy when the removed node had one child was to replace it with its child
 - But when the node has two children problems arise
- Which child should we replace the node with?
 - We could solve this by just picking one ...
- But what if the node we replace it with also has two children?
 - This will cause a problem

Find the Predecessor

- When a node has two children, instead of replacing it with one of its children find its *predecesor*
 - A node's predecessor is the *right most* node of its *left* subtree
 - The predecessor is the node in the tree with the *largest* value *less* than the node's value
- The predecesor cannot have a right child and can therefore have at most one child
 - Why?

Predecessor Node

Why Use the Predecessor?

- The predecssor has some useful properties
 - Because of the BST property it must be the largest value less than its ancestor's value
 - It is to the right of all of the nodes in its ancestor's *left* subtree so must be greater than them
 - It is less than the nodes in its ancestor's right subtree
 - It can have only one child
- These properties make it a good candidate to replace its ancestor

What About the Successor?

- The successor to a node is the *left* most child of its *right* subtree
 - It has the *smallest* value *greater* than its ancestor's value
 - And cannot have a left child
- The successor can also be used to replace a removed node
 - Pick either the precedessor or successor!

Removal Alternatives - 1

- Instead of removing a BST node mark it as removed in some way
 - Set the data object to *null*, for example
- And change the insertion algorithm to look for empty nodes
 - And insert the new item in an empty node that is found on the way down the tree

Removal Alternatives - 2

- An alternative to the removal approach for nodes with 2 children is to replace the data
 - The data from the predecessor node is copied into the node to be removed
 - And the predecessor node is then removed
 - Using the approach described for removing nodes with one or no children
- This avoids some of the complicated pointer assignments

BST Efficiency

BST Efficiency

- The efficiency of BST operations depends on the height of the tree
 - All three operations (search, insert and delete) are O(height)
- If the tree is complete the height is $\lfloor \log(n) \rfloor$
 - What if it isn't complete?

Height of a BST

- Insert 7
- Insert 4
- Insert 1
- Insert 9
- Insert 5
- It's a complete tree!

Height of a BST

- Insert 9
- Insert 1
- Insert 7
- Insert 4
- Insert 5
- It's a linked list with a lot of extra pointers!

Balanced BSTs

- It would be ideal if a BST was always close to complete
 - i.e. balanced
- How do we guarantee a balanced BST?
 - We have to make the structure and / or the insertion and deletion algorithms more complex
 - e.g. red black trees.

Sorting and Binary Search Trees

- It is possible to sort an array using a binary search tree
 - Insert the array items into an empty tree
 - Write the data from the tree back into the array using an InOrder traversal
- Running time = n*(insertion cost) + traversal
 - Insertion cost is O(h)
 - Traversal is O(n)
 - Total = O(n) * O(h) + O(n), i.e. O(n * h)
 - If the tree is balanced = O(n * log(n))