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 Understand tree terminology
 Understand and implement tree traversals
 Define the binary search tree property
 Implement binary search trees
 Implement the TreeSort algorithm
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 A set of nodes (or vertices) 
with a single starting point

▪ called the root

 Each node is connected by an 
edge to another node

 A tree is a connected graph

▪ There is a path to every node in 
the tree

▪ A tree has one less edge than the 
number of nodes
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All the nodes are 
not connected

NO!
There is an extra 

edge (5 nodes and 
5 edges)

yes! (but not 

a binary tree)
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the blue one)
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 Node v is said to be a child of u,
and u the parent of v if
▪ There is an edge between the 

nodes u and v, and 

▪ u is above v in the tree, 

 This relationship can be 
generalized
▪ E and F are descendants of A

▪ D and A are ancestors of G

▪ B, C and D are siblings

▪ F and G are?
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 A leaf is a node with no children
 A path is a sequence of nodes v1 … vn

▪ where vi is a parent of vi+1 (1  i  n)

 A subtree is any node in the tree along with all of its 
descendants

 A binary tree is a tree with at most two children per 
node

▪ The children are referred to as left and right

▪ We can also refer to left and right subtrees
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 The height of a node v is the length of the longest 
path from v to a leaf

▪ The height of the tree is the height of the root

 The depth of a node v is the length of the path from 
v to the root

▪ This is also referred to as the level of a node

 Note that there is a slightly different formulation of 
the height of a tree

▪ Where the height of a tree is said to be the number of 
different levels of nodes in the tree (including the root)
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 A binary tree is perfect, if

▪ No node has only one child

▪ And all the leaves have the 
same depth

 A perfect binary tree of 
height h has 

▪ 2h+1 – 1 nodes, of which 2h are 
leaves

 Perfect trees are also 
complete
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 Each level doubles the number of nodes

▪ Level 1 has 2 nodes (21)

▪ Level 2 has 4 nodes (22) or 2 times the number in Level 1

 Therefore a tree with h levels has 2h+1 – 1 nodes

▪ The root level has 1 node
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 A binary tree is complete if

▪ The leaves are on at most two 
different levels,

▪ The second to bottom level is 
completely filled in and

▪ The leaves on the bottom level 
are as far to the left as possible
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 A binary tree is balanced if

▪ Leaves are all about the same distance from the root

▪ The exact specification varies

 Sometimes trees are balanced by comparing the 
height of nodes

▪ e.g. the height of a node’s right subtree is at most one 
different from the height of its left subtree

 Sometimes a tree's height is compared to the 
number of nodes

▪ e.g. red-black trees
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 A traversal algorithm for a binary tree visits each 
node in the tree
▪ Typically,  it will do something while visiting each node!

 Traversal algorithms are naturally recursive
 There are three traversal methods

▪ Inorder

▪ Preorder

▪ Postorder
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inOrder(Node* nd) {
if (nd != NULL) {

inOrder(nd->leftChild);
visit(nd);
inOrder(nd->rightChild);

}
}
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The visit function would do whatever the purpose of 
the traversal is, for example print the data in the node



John Edgar 21

17

13 27

9 3916

11

20

4

3

2

5 7

1

6

8

visit(nd)

preOrder(nd->leftChild)

preOrder(nd->rightChild)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)



John Edgar

postOrder(left)
postOrder(right)
visit
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 The binary tree ADT can be implemented using 

different data structures

▪ Reference structures (similar to linked lists)

▪ Arrays

 Example implementations

▪ Binary search trees (references)

▪ Red – black trees (references again)

▪ Heaps (arrays) – not a binary search tree

▪ B trees (arrays again) – not a binary search tree
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 Consider maintaining data in some order

▪ The data is to be frequently searched on the sort 
key e.g. a dictionary

 Possible solutions might be:

▪ A sorted array

▪ Access in O(logn) using binary search

▪ Insertion and deletion in linear time

▪ An ordered linked list

▪ Access, insertion and deletion in linear time
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 The data structure should be able to perform all 
these operations efficiently

▪ Create an empty dictionary

▪ Insert

▪ Delete

▪ Look up

 The insert, delete and look up operations should be 
performed in at most O(logn) time

26



John Edgar

 A binary search tree is a binary tree with a 
special property

▪ For all nodes in the tree:

▪ All nodes in a left subtree have labels less than the label 
of the subtree's root

▪ All nodes in a right subtree have labels greater than or 
equal to the label of the subtree's root

 Binary search trees are fully ordered
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 Binary search trees can be implemented using a 
reference structure

 Tree nodes contain data and two pointers to nodes
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Node* leftChild Node* rightChilddata

references or pointers to Nodes

data to be stored in 
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 To find a value in a BST search from the root node:
▪ If the target is less than the value in the node search its left 

subtree

▪ If the target is greater than the value in the node search its 
right subtree

▪ Otherwise return true, (or a pointer to the data, or …)

 How many comparisons?
▪ One for each node on the path

▪ Worst case: height of the tree + 1
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bool search(Node* nd, int x){
if (nd == NULL){

return false;
}else if(x == nd->data){

return true;
} else if (x < nd->data){

return search(x, nd->left);
} else {

return search(x, nd->right);
}

}

reached the end of this path

note the similarity 
to binary search

called by a helper method like this: 
search(root, target)
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 The BST property must hold after insertion
 Therefore the new node must be inserted in the 

correct position

▪ This position is found by performing a search

▪ If the search ends at the NULL left child of a node make its 
left child refer to the new node

▪ If the search ends at the NULL right child of a node make 
its right child refer to the new node

 The cost is about the same as the cost for the search 
algorithm, O(height)
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 After removal the BST property must hold
 Removal is not as straightforward as search or 

insertion

▪ With insertion the strategy is to insert a new leaf

▪ Which avoids changing the internal structure of the tree

▪ This is not possible with removal
▪ Since the removed node's position is not chosen by the algorithm

 There are a number of different cases to be 
considered
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 The node to be removed has no children

▪ Remove it (assigning NULL to its parent’s reference)

 The node to be removed has one child

▪ Replace the node with its subtree

 The node to be removed has two children

▪ …
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 One of the issues with implementing a BST is 
the necessity to look at both children

▪ And, just like a linked list, look ahead for insertion 
and removal

▪ And check that a node is null before accessing its 
member variables

 Consider removing a node with one child in 
more detail
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57 91 97

remove 59

Step 1 - we need to find the node to remove 
and its parent

it’s useful to know if nd is a left or right child

while (nd != target)
if (nd == NULL)

return
if (target < nd->data)

parent = nd
nd = nd->left
isLeftChild = true

else
parent = nd
nd = nd->right
isLeftChild = false
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Now we have enough information to
detach 59 and attach its child to 54
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 The most difficult case is when the node to be 
removed has two children

▪ The strategy when the removed node had one child was to 
replace it with its child

▪ But when the node has two children problems arise

 Which child should we replace the node with?

▪ We could solve this by just picking one …

 But what if the node we replace it with also has two 
children?

▪ This will cause a problem
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 When a node has two children, instead of replacing 
it with one of its children find its predecesor

▪ A node’s predecessor is the right most node of its left 
subtree

▪ The predecessor is the node in the tree with the largest
value less than the node’s value

 The predecesor cannot have a right child and can 
therefore have at most one child

▪ Why?
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the predecessor
of 32 is the right
most node in its
left subtree

The predecessor
cannot have a
right child as it
wouldn’t then be
the right most
node
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 The predecssor has some useful properties

▪ Because of the BST property it must be the 
largest value less than its ancestor’s value

▪ It is to the right of all of the nodes in its ancestor’s left
subtree so must be greater than them

▪ It is less than the nodes in its ancestor’s right subtree

▪ It can have only one child

 These properties make it a good candidate to 
replace its ancestor
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 The successor to a node is the left most child 
of its right subtree

▪ It has the smallest value greater than its ancestor’s 
value

▪ And cannot have a left child

 The successor can also be used to replace a 
removed node

▪ Pick either the precedessor or successor!
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find successor and detach
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find successor and detach
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find successor and detach
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 Instead of removing a BST node mark it as 
removed in some way

▪ Set the data object to null, for example

 And change the insertion algorithm to look 
for empty nodes

▪ And insert the new item in an empty node that is 
found on the way down the tree
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 An alternative to the removal approach for 
nodes with 2 children is to replace the data

▪ The data from the predecessor node is copied into 
the node to be removed

▪ And the predecessor node is then removed

▪ Using the approach described for removing nodes with 
one or no children

 This avoids some of the complicated pointer 
assignments
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 The efficiency of BST operations depends on the 
height of the tree

▪ All three operations (search, insert and delete) are 
O(height)

 If the tree is complete the height is log(n)

▪ What if it isn’t complete?
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 Insert 7
 Insert 4
 Insert 1
 Insert 9
 Insert 5
 It’s a complete tree!
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 Insert 9
 Insert 1
 Insert 7
 Insert 4
 Insert 5
 It’s a linked list with a lot 

of extra pointers!
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 It would be ideal if a BST was always close to 
complete

▪ i.e. balanced

 How do we guarantee a balanced BST?

▪ We have to make the structure and / or the 
insertion and deletion algorithms more complex

▪ e.g. red – black trees.
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 It is possible to sort an array using a binary search 
tree
▪ Insert the array items into an empty tree

▪ Write the data from the tree back into the array using an 
InOrder traversal

 Running time = n*(insertion cost) + traversal
▪ Insertion cost is O(h)

▪ Traversal is O(n)

▪ Total = O(n) * O(h) + O(n), i.e. O(n * h)

▪ If the tree is balanced = O(n * log(n))
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