
Binary Search Trees

John Edgar

 Understand tree terminology
 Understand and implement tree traversals
 Define the binary search tree property
 Implement binary search trees
 Implement the TreeSort algorithm

2

John Edgar

 A set of nodes (or vertices)
with a single starting point

▪ called the root

 Each node is connected by an
edge to another node

 A tree is a connected graph

▪ There is a path to every node in
the tree

▪ A tree has one less edge than the
number of nodes

4

root

node

edge

John Edgar 5

yes!
NO!

All the nodes are
not connected

NO!
There is an extra

edge (5 nodes and
5 edges)

yes! (but not

a binary tree)

yes! (it’s actually

a similar graph to
the blue one)

John Edgar

A

B C D

GE F

 Node v is said to be a child of u,
and u the parent of v if
▪ There is an edge between the

nodes u and v, and

▪ u is above v in the tree,

 This relationship can be
generalized
▪ E and F are descendants of A

▪ D and A are ancestors of G

▪ B, C and D are siblings

▪ F and G are?

6

root

edge

parent of
B, C, D

John Edgar

 A leaf is a node with no children
 A path is a sequence of nodes v1 … vn

▪ where vi is a parent of vi+1 (1 i n)

 A subtree is any node in the tree along with all of its
descendants

 A binary tree is a tree with at most two children per
node

▪ The children are referred to as left and right

▪ We can also refer to left and right subtrees

7

D

GGFE

C

John Edgar 8

B D

GE F

C, E, F and G
are leaves

path from A
to D to G

subtree
rooted at B

AA

C

John Edgar 9

A

B C

GD E

left subtree of A

H I J

F

right subtree of C

right child of A

John Edgar

 The height of a node v is the length of the longest
path from v to a leaf

▪ The height of the tree is the height of the root

 The depth of a node v is the length of the path from
v to the root

▪ This is also referred to as the level of a node

 Note that there is a slightly different formulation of
the height of a tree

▪ Where the height of a tree is said to be the number of
different levels of nodes in the tree (including the root)

10

John Edgar 11

A

B

E

I

F

A

B

E

height of node B is 2

height of the tree is 3

depth of
node E is

2

level 1

level 2

level 3

B

A

J

GD

H

C

John Edgar

 A binary tree is perfect, if

▪ No node has only one child

▪ And all the leaves have the
same depth

 A perfect binary tree of
height h has

▪ 2h+1 – 1 nodes, of which 2h are
leaves

 Perfect trees are also
complete

12

A

B C

GD E F

John Edgar

 Each level doubles the number of nodes

▪ Level 1 has 2 nodes (21)

▪ Level 2 has 4 nodes (22) or 2 times the number in Level 1

 Therefore a tree with h levels has 2h+1 – 1 nodes

▪ The root level has 1 node

13

12

22

31

23 24

33 34 35 36 38

01

11

21

32 37

the bottom level has 2h

nodes, that is, just over
½ the nodes are leaves

John Edgar

 A binary tree is complete if

▪ The leaves are on at most two
different levels,

▪ The second to bottom level is
completely filled in and

▪ The leaves on the bottom level
are as far to the left as possible

14

A

B C

D E F

John Edgar

 A binary tree is balanced if

▪ Leaves are all about the same distance from the root

▪ The exact specification varies

 Sometimes trees are balanced by comparing the
height of nodes

▪ e.g. the height of a node’s right subtree is at most one
different from the height of its left subtree

 Sometimes a tree's height is compared to the
number of nodes

▪ e.g. red-black trees

15

John Edgar 16

A

B C

FD E

A

B C

FD E

G

John Edgar 17

A

B

C D

A

B C

ED

F

John Edgar

 A traversal algorithm for a binary tree visits each
node in the tree
▪ Typically, it will do something while visiting each node!

 Traversal algorithms are naturally recursive
 There are three traversal methods

▪ Inorder

▪ Preorder

▪ Postorder

19

John Edgar

inOrder(Node* nd) {
if (nd != NULL) {

inOrder(nd->leftChild);
visit(nd);
inOrder(nd->rightChild);

}
}

20

The visit function would do whatever the purpose of
the traversal is, for example print the data in the node

John Edgar 21

17

13 27

9 3916

11

20

4

3

2

5 7

1

6

8

visit(nd)

preOrder(nd->leftChild)

preOrder(nd->rightChild)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

visit
preOrder(left)
preOrder(right)

John Edgar

postOrder(left)
postOrder(right)
visit

22

17

13 27

9 3916

11

20

1

2

4

3
5

8

7

6

postOrder(nd->leftChild)

postOrder(nd->rightChild)

visit(nd)

postOrder(left)
postOrder(right)
visit

postOrder(left)
postOrder(right)
visit

postOrder(left)
postOrder(right)
visit

postOrder(left)
postOrder(right)
visit

postOrder(left)
postOrder(right)
visit

postOrder(left)
postOrder(right)
visit

John Edgar

 The binary tree ADT can be implemented using

different data structures

▪ Reference structures (similar to linked lists)

▪ Arrays

 Example implementations

▪ Binary search trees (references)

▪ Red – black trees (references again)

▪ Heaps (arrays) – not a binary search tree

▪ B trees (arrays again) – not a binary search tree

24

John Edgar

 Consider maintaining data in some order

▪ The data is to be frequently searched on the sort
key e.g. a dictionary

 Possible solutions might be:

▪ A sorted array

▪ Access in O(logn) using binary search

▪ Insertion and deletion in linear time

▪ An ordered linked list

▪ Access, insertion and deletion in linear time

25

John Edgar

 The data structure should be able to perform all
these operations efficiently

▪ Create an empty dictionary

▪ Insert

▪ Delete

▪ Look up

 The insert, delete and look up operations should be
performed in at most O(logn) time

26

John Edgar

 A binary search tree is a binary tree with a
special property

▪ For all nodes in the tree:

▪ All nodes in a left subtree have labels less than the label
of the subtree's root

▪ All nodes in a right subtree have labels greater than or
equal to the label of the subtree's root

 Binary search trees are fully ordered

27

John Edgar

9

27

11

28

17

13

3916 20

John Edgar 29

17

13 27

9 3916

11

20

2

1

3

4 6

5

7

8

inOrder(nd->leftChild)

visit(nd)

inOrder(nd->rightChild)

inOrder(left)
visit
inOrder(right)

inOrder(left)
visit
inOrder(right)

inOrder(left)
visit
inOrder(right)

inOrder(left)
visit
inOrder(right)

inOrder(left)
visit
inOrder(right)

inOrder(left)
visit
inOrder(right)

inOrder(left)
visit
inOrder(right)

An inorder traversal
retrieves the data in
sorted order

John Edgar

 Binary search trees can be implemented using a
reference structure

 Tree nodes contain data and two pointers to nodes

31

Node* leftChild Node* rightChilddata

references or pointers to Nodes

data to be stored in
the tree (usually an

object)

John Edgar

 To find a value in a BST search from the root node:
▪ If the target is less than the value in the node search its left

subtree

▪ If the target is greater than the value in the node search its
right subtree

▪ Otherwise return true, (or a pointer to the data, or …)

 How many comparisons?
▪ One for each node on the path

▪ Worst case: height of the tree + 1

32

John Edgar 33

bool search(Node* nd, int x){
if (nd == NULL){

return false;
}else if(x == nd->data){

return true;
} else if (x < nd->data){

return search(x, nd->left);
} else {

return search(x, nd->right);
}

}

reached the end of this path

note the similarity
to binary search

called by a helper method like this:
search(root, target)

John Edgar

 The BST property must hold after insertion
 Therefore the new node must be inserted in the

correct position

▪ This position is found by performing a search

▪ If the search ends at the NULL left child of a node make its
left child refer to the new node

▪ If the search ends at the NULL right child of a node make
its right child refer to the new node

 The cost is about the same as the cost for the search
algorithm, O(height)

35

John Edgar 36

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

43

43

create new node

insert 43

find position

insert new node

John Edgar

 After removal the BST property must hold
 Removal is not as straightforward as search or

insertion

▪ With insertion the strategy is to insert a new leaf

▪ Which avoids changing the internal structure of the tree

▪ This is not possible with removal
▪ Since the removed node's position is not chosen by the algorithm

 There are a number of different cases to be
considered

38

John Edgar

 The node to be removed has no children

▪ Remove it (assigning NULL to its parent’s reference)

 The node to be removed has one child

▪ Replace the node with its subtree

 The node to be removed has two children

▪ …

39

John Edgar 40

63

41

10

7 12

54 79

37 44 53 59 96

57 91 97

remove 30
47

32

19

23

30

47

32

19

23

John Edgar 41

63

41

10

7 12

54 79

37 44 53 59 96

57 91 97

47

32

19

23

30

remove 79
replace with subtree

John Edgar 42

63

41

10

7 12

54

37 44 53 59 96

57 91 97

47

32

19

23

30

remove 79
after removal

John Edgar

 One of the issues with implementing a BST is
the necessity to look at both children

▪ And, just like a linked list, look ahead for insertion
and removal

▪ And check that a node is null before accessing its
member variables

 Consider removing a node with one child in
more detail

43

John Edgar 44

63

54 79

53 59 96

57 91 97

remove 59

Step 1 - we need to find the node to remove
and its parent

it’s useful to know if nd is a left or right child

while (nd != target)
if (nd == NULL)

return
if (target < nd->data)

parent = nd
nd = nd->left
isLeftChild = true

else
parent = nd
nd = nd->right
isLeftChild = false

John Edgar 45

63

54 79

53 59 96

57 91 97

remove 59

parent

nd

isLeftChild = false

Now we have enough information to
detach 59 and attach its child to 54

John Edgar

 The most difficult case is when the node to be
removed has two children

▪ The strategy when the removed node had one child was to
replace it with its child

▪ But when the node has two children problems arise

 Which child should we replace the node with?

▪ We could solve this by just picking one …

 But what if the node we replace it with also has two
children?

▪ This will cause a problem

46

John Edgar 47

63

41

10

7 12

54

37 44 53 59 96

57 91 97

47

32

19

23

30

remove 32

let’s say that we
decide to replace
it with its right
child (41)

But 41 has 2 children,
and it also has to
inherit (adopt?) the
other child of its
removed parent

John Edgar

 When a node has two children, instead of replacing
it with one of its children find its predecesor

▪ A node’s predecessor is the right most node of its left
subtree

▪ The predecessor is the node in the tree with the largest
value less than the node’s value

 The predecesor cannot have a right child and can
therefore have at most one child

▪ Why?

48

John Edgar 49

63

41

10

7 12

54

37 44 53 59 96

57 91 97

47

32

19

23

30

32’s predecessor

the predecessor
of 32 is the right
most node in its
left subtree

The predecessor
cannot have a
right child as it
wouldn’t then be
the right most
node

30

John Edgar

 The predecssor has some useful properties

▪ Because of the BST property it must be the
largest value less than its ancestor’s value

▪ It is to the right of all of the nodes in its ancestor’s left
subtree so must be greater than them

▪ It is less than the nodes in its ancestor’s right subtree

▪ It can have only one child

 These properties make it a good candidate to
replace its ancestor

50

John Edgar

 The successor to a node is the left most child
of its right subtree

▪ It has the smallest value greater than its ancestor’s
value

▪ And cannot have a left child

 The successor can also be used to replace a
removed node

▪ Pick either the precedessor or successor!

51

John Edgar 52

63

41

10

7 12

54

37 44 53 59 96

57 91 97

47

32

19

23

30

remove 32

find successor and detach

temp

37

John Edgar

find successor and detach

53

63

41

10

7 12

54

37 44 53 59 96

57 91 97

47

32

19

23

30

remove 32

temp

attach node’s children to
its successor

37

temp

John Edgar

find successor and detach

54

63

41

10

7 12

54

44 53 59 96

57 91 97

47

32

19

23

30

remove 32

attach node’s children 37

temp
make successor child of
node’s parent

John Edgar

find successor and detach

55

63

41

10

7 12

54

44 53 59 96

57 91 97

47

19

23

30

remove 32

attach node’s children 37

temp
make successor child

in this example the
successor had no subtree

John Edgar 56

63

41

10

7 12

54

37 44 53 59 96

57 91 97

47

32

19

23

30

remove 63

find predecessor*

*just because …

temp

59

John Edgar 57

63

41

10

7 12

54

37 44 53 59 96

57 91 97

47

32

19

23

30

remove 63

find predecessor

temp

59

attach predecessor’s
subtree to its parent

59

John Edgar 58

63

41

10

7 12

54

37 44 53 96

57 91 97

47

32

19

23

30

remove 63

find predecessor

temp

attach pre’s subtree

attach node’s children to
predecessor

temp

59

John Edgar 59

63

41

10

7 12

54

37 44 53 96

57 91 97

47

32

19

23

30

remove 63

find predecessor

attach pre’s subtree

attach node’s children temp

59

attach the predecessor to
the node’s parent

John Edgar 60

41

10

7 12

54

37 44 53 96

57 91 97

47

32

19

23

30

remove 63

find predecessor

attach pre’s subtree

attach node’s children

59

attach the predecessor to
the node’s parent

John Edgar

 Instead of removing a BST node mark it as
removed in some way

▪ Set the data object to null, for example

 And change the insertion algorithm to look
for empty nodes

▪ And insert the new item in an empty node that is
found on the way down the tree

61

John Edgar

 An alternative to the removal approach for
nodes with 2 children is to replace the data

▪ The data from the predecessor node is copied into
the node to be removed

▪ And the predecessor node is then removed

▪ Using the approach described for removing nodes with
one or no children

 This avoids some of the complicated pointer
assignments

62

John Edgar

 The efficiency of BST operations depends on the
height of the tree

▪ All three operations (search, insert and delete) are
O(height)

 If the tree is complete the height is log(n)

▪ What if it isn’t complete?

64

John Edgar

 Insert 7
 Insert 4
 Insert 1
 Insert 9
 Insert 5
 It’s a complete tree!

65

7

4 9

1 5

height = log(5) = 2

John Edgar

 Insert 9
 Insert 1
 Insert 7
 Insert 4
 Insert 5
 It’s a linked list with a lot

of extra pointers!

66

7

1

9

5

4

height = n-1 = 4 = O(n)

John Edgar

 It would be ideal if a BST was always close to
complete

▪ i.e. balanced

 How do we guarantee a balanced BST?

▪ We have to make the structure and / or the
insertion and deletion algorithms more complex

▪ e.g. red – black trees.

67

John Edgar

 It is possible to sort an array using a binary search
tree
▪ Insert the array items into an empty tree

▪ Write the data from the tree back into the array using an
InOrder traversal

 Running time = n*(insertion cost) + traversal
▪ Insertion cost is O(h)

▪ Traversal is O(n)

▪ Total = O(n) * O(h) + O(n), i.e. O(n * h)

▪ If the tree is balanced = O(n * log(n))

68

