O Notation Examples

O Notation Categories

- $O(1)$ - constant time
- The time is independent of n
- $O(\log n)$ - logarithmic time
- Usually the log is to the base 2
- $O(n)$ - linear time
- $O(n * \log n)$
- $O\left(n^{2}\right)$ - quadratic time
- $O\left(n^{k}\right)$ - polynomial (where k is some constant)
- $O\left(2^{n}\right)$ - exponential time

Maximum Value in an Array

// PRE: arr is sorted
int maxSorted(int arr[], int n)\{ return arr[n-1];
\}
$O(1)$

Maximum Value in an Array

int max(int arr[], int n) \{ int maximum = arr[0]; for (int $i=0$; $i<n$; ++i)\{ if arr[i] > maximum \{ maximum = arr[i];
\}
$O(n)$
\}
return maximum;
\}

Loops

- What is the difference between the two max functions?
- The first always looks at the last element of the array
- Arrays support random access so the time it takes to retrieve this value is not dependent on the array size
- The second contains a for loop
- The for loop in the max function iterates n times
- The loop control variable starts at o, goes up by 1 for each loop iteration and the loop ends when it reaches n
- If a function contains a for loop is it always $O(n)$?
- Not necessarily

Mean By Sampling

float approximateMean(int arr[], int n)\{
float sum = 0;
for (int $i=0$; $i<n$; $i+=10)\{$
sum += arr[i];
\} return sum / (n / 10.0);
\}
$O(n)$

Binary Search

```
bool search(int arr[], int n, int x){
    int low = 0;
    int high = n - 1;
    int mid = 0;
    while (low <= high){
    mid = (low + high) / 2;
    if(x > arr[mid]){
        low = mid + 1;
        } else if(x < arr[mid]) {
        high = mid - 1;
        }
        else { // x == arr[mid]
            return true;
        }
                            O(log(n))
    } //while
    return false;
Average and worst case
```


Analyzing Loops

- It is important to analyze how many times a loop iterates
- By considering how the loop control variable changes through each iteration
- Be careful to ignore constants
- Consider how the running time would change if the input doubled
- In an $O(n)$ algorithm the running time will double
- In a $O(\log (n))$ algorithm it increases by 1

Mean

float mean(int arr[], int $n)\{$
float sum = 0;
for (int $i=0 ; i<n ;++i)\{$
sum += arr[i];
\}
return sum / n;
\}
$O(n)$

Variance

int stupidVariance(int arr[], int n)
\{
float result = 0;
float sqDiff $=0$;
for (int $i=0$; $i<n$; ++i)\{ sqDiff = arr[i] - mean(arr, n); sqDiff *= sqDiff; result += sqDiff;
\}
$O\left(n^{2}\right)$
return result;
\} How could this be improved?

Less Stupid Variance

float variance(int arr[], int n)
\{
float result $=0$;
float avg $=$ mean $(a r r, n)$;
for (int $i=0 ; i<n ;++i)\{$
float sqDiff = arr[i] - avg;
sqDiff *= sqDiff;
result += sqDiff;

$$
T_{A}=T_{\text {mean }}+5 n+4
$$

\} return result;

Bubble

```
void bubble(int arr[], int n)
{
    bool swapped = true;
    while(swapped){
        swapped = false;
        for (int i=0; i < n-1; ++i){
    if(arr[i] > arr[i+1]){
        int temp = arr[i];
        arr[i] = arr[i+1];
        arr[i+1] = temp;
        swapped = true;
    } Average and worst case

\section*{Duplicates}
void duplicates(int arr[], int n)
\{
for(int \(i=0 ; i<n ;++i)\{\)
for (int \(j=0 ; j<n ;++j)\{\)
if(i ! \(=j)\{\)
if (arr[i] == arr[j])
return true;
\}
\}
In worst cas
Best case?
return false;
\}
Average case?

\section*{Nested Loops}
- The (stupid) variance, bubble and duplicates functions contain nested loops
- Both the inner loops perform \(\mathrm{O}(n)\) iterations
- In variance the inner loop is contained in a function
- And the outer loops also perform \(\mathrm{O}(n)\) iterations
- The functions are therefore \(O\left(n^{2}\right)\)
- Make sure that you check to see how many times both loops iterate

\section*{Another Nested Loop}
int foo(int arr[], int n)\{
int result = 0;
int i = 0;
while (i < n / 2) \{
result += arr[i];
i += 1;
while (i >= \(\mathrm{n} / 2\) \& \(\mathrm{res} \mathrm{i}<\mathrm{n})\{\)
i += 1;
\}
\}
return result;
\}

\section*{Alphabetical Order}
bool alphaOrder(string s)\{
int end = s.size() - 1;
for (int i = 0; i < end; ++i)\{
if (s[i] > s[i+1])\{
return false;
\}
\}
return true;
Best case - \(O_{(1)}\)
Average case - ?
\}
Worst case - O(n)

\section*{Best, Average and Worst Case}
- Best case and worst case analysis are often relatively straightforward
- Although they require a solid understanding of the algorithm's behaviour
- Average case analysis can be more difficult
- It may involve a more complex mathematical analysis of the function's behaviour
- But can sometimes be achieved by considering whether it is closer to the worst or best case

\section*{Recursive Sum}
int sum(int arr[], int \(n\), int \(i)\{\)
\[
\begin{aligned}
& \text { if }(\mathrm{i}==\mathrm{n}-1)\{ \\
& \text { return } \operatorname{arr}[\mathrm{i}] ;
\end{aligned}
\]
\}
\[
\begin{aligned}
& \text { else }\{ \\
& \operatorname{return} \operatorname{arr}[i]+\operatorname{sum}(\operatorname{arr}, n, i+1) ;
\end{aligned}
\]
\}
\}
Assume there is a calling function that calls sum(arr, size, o)

\section*{Recursive Functions}
- The analysis of a recursive function revolves around the number of recursive calls made
- And the running time of a single recursive call
- In the sum example the amount of a single function call is constant
- It is not dependent on the size of the array
- One recursive call is made for each element of the array

\section*{Quicksort Analysis}
- One way of analyzing a recursive algorithm is to draw a tree of the recursive calls
- Determine the depth of the tree
- And the running time of each level of the tree
- In Quicksort the partition algorithm is responsible for partitioning sub-arrays
- That at any level of the recursion tree make up the entire array when aggregated
- Therefore each level of the tree entails \(\mathrm{O}(n)\) work

\section*{Quicksort Best Case}


At each level the partition process performs roughly \(n\) operations, how many levels are there?

At each level the sub-array size is half the size of the previous level

\section*{O(log(n)) levels}

Multiply the work at each level by number of levels
\[
O(n * \log (n))
\]

\section*{Quicksort Worst Case}


At each level the partition process performs roughly \(n\) operations, how many levels are there?

At each level the sub-array size is one less than the size of the previous level

\section*{\(O(n)\) levels}

Multiply the work at each level by levels

\section*{Recursive Fibonacci Analysis}
- The running time of the recursive Fibonacci function we looked at was painfully slow - But just how bad was it?
- Let's consider a couple of possible running times
- O \(\left(n^{2}\right)\)
- \(\mathrm{O}\left(2^{n}\right)\)
- We will use another tool to reason about the running time
- Induction

\section*{Analysis of fib(5)}
```

int fib(int n)
if(n == 0 || n n== 1)
else
return fib(n-1) + fib(n-2)

```
        5
\(\mathbf{5}\)
fib(5)


\section*{Fibonacci Analysis - 1}
- Let's assume that it is \(\mathrm{O}\left(n^{2}\right)\)
- Although this isn't supported by the recursion tree
- Base case \(-\mathrm{T}(n \leq 1)=\mathrm{O}\) (1)
- True, since only 2 operations are performed
- Inductive hypothesis: \(T(n-1)=(n-1)^{2}\)
- Inductive proof - prove that \(\mathrm{T}(n)=n^{2}\) given hypothesis
- we claim that: \(n^{2} \geq(n-1)^{2}+(n-2)^{2}\)
- \(n^{2} \geq\left(n^{2}-2 n+2\right)+\left(n^{2}-4 n+4\right)\)
- \(n^{2} \geq 2 n^{2}-6 n+6\)
- But \(2 n^{2}-6 n+6>n^{2}\), the inductive hypothesis is not proven

\section*{Fibonacci Analysis - 2}
- Let's assume that it is \(\mathrm{O}\left(2^{n}\right)\)
- Base case \(-\mathrm{T}(n \leq 1)=\mathrm{O}(1)\)
- True, since only 2 operations are performed
- Inductive hypothesis: \(T(n-1)=2^{n-1}\)
- Inductive proof - prove that \(T(n)=2^{n}\)
- \(2^{n} \geq 2^{n-1}+2^{n-2}\)
- Since \(2^{n}=2^{n-1}+2^{n-1}, 2^{n}\) is greater than \(2^{n-1}+2^{n-2}\)
- The inductive hypothesis is proven```

