


 O(1) – constant time

▪ The time is independent of n

 O(log n) – logarithmic time

▪ Usually the log is to the base 2

 O(n) – linear time
 O(n*logn)
 O(n2) – quadratic time
 O(nk) – polynomial (where k is some constant)

 O(2n) – exponential time



// PRE: arr is sorted
int maxSorted(int arr[], int n){

return arr[n-1];
} O(1)



int max(int arr[], int n){
int maximum = arr[0];
for (int i=0; i < n; ++i){

if arr[i] > maximum {
maximum = arr[i];

}
}
return maximum;

}

O(n)



 What is the difference between the two max
functions?

▪ The first always looks at the last element of the array
▪ Arrays support random access so the time it takes to retrieve this 

value is not dependent on the array size

▪ The second contains a for loop

 The for loop in the max function iterates n times

▪ The loop control variable starts at 0, goes up by 1 for each 
loop iteration and the loop ends when it reaches n

 If a function contains a for loop is it always O(n)?

▪ Not necessarily



float approximateMean(int arr[], int n){
float sum = 0;
for (int i=0; i < n; i+=10){

sum += arr[i];
}
return sum / (n / 10.0);

} O(n)

TA =0.3n + 3



bool search(int arr[], int n, int x){
int low = 0;
int high = n - 1;
int mid = 0;
while (low <= high){

mid = (low + high) / 2;
if(x > arr[mid]){

low = mid + 1;
} else if(x < arr[mid]) {

high = mid - 1;
}
else { // x == arr[mid]

return true;
}

} //while
return false; 

}
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O(log(n))

Average and worst case



 It is important to analyze how many times a 
loop iterates

▪ By considering how the loop control variable 
changes through each iteration

 Be careful to ignore constants

▪ Consider how the running time would change if 
the input doubled

▪ In an O(n) algorithm the running time will double

▪ In a O(log(n)) algorithm it increases by 1



float mean(int arr[], int n){
float sum = 0;
for (int i=0; i < n; ++i){

sum += arr[i];
}
return sum / n;

}

O(n)



int stupidVariance(int arr[], int n)
{

float result = 0;
float sqDiff = 0;
for (int i=0; i < n; ++i){

sqDiff = arr[i] – mean(arr, n);
sqDiff *= sqDiff;
result += sqDiff;

}
return result;

}
How could this be improved?

O(n2)



float variance(int arr[], int n)
{

float result = 0;
float avg = mean(arr, n);
for (int i=0; i < n; ++i){

float sqDiff = arr[i] – avg;
sqDiff *= sqDiff;
result += sqDiff;

}
return result;

}
O(n)

TA = Tmean + 5n + 4



void bubble(int arr[], int n)
{

bool swapped = true;
while(swapped){

swapped = false;
for (int i=0; i < n-1; ++i){

if(arr[i] > arr[i+1]){
int temp = arr[i];
arr[i] = arr[i+1];
arr[i+1] = temp;
swapped = true;

}
}

}
}

O(n2)Average and worst case

Best case?



void duplicates(int arr[], int n)
{

for(int i=0; i < n; ++i){
for (int j=0; j < n; ++j){

if(i != j){
if (arr[i] == arr[j])

return true;
}

}
}
return false;

}

O(n2)In worst case

Average case?

Best case?



 The (stupid) variance, bubble and duplicates

functions contain nested loops

▪ Both the inner loops perform O(n) iterations

▪ In variance the inner loop is contained in a function

▪ And the outer loops also perform O(n) iterations

 The functions are therefore O(n2)

▪ Make sure that you check to see how many times 

both loops iterate



int foo(int arr[], int n){
int result = 0;
int i = 0;
while (i < n / 2){

result += arr[i];
i += 1;
while (i >= n / 2 && i < n){

result += arr[i];
i += 1;

}
}

return result;
}

O(n)



bool alphaOrder(string s){
int end = s.size() - 1;
for (int i = 0; i < end; ++i){

if (s[i] > s[i+1]){
return false;

}
}
return true;

}

Best case - O(1)

Average case - ?

Worst case - O(n)



 Best case and worst case analysis are often 
relatively straightforward

▪ Although they require a solid understanding of 
the algorithm's behaviour

 Average case analysis can be more difficult

▪ It may involve a more complex mathematical 
analysis of the function's behaviour

▪ But can sometimes be achieved by considering 
whether it is closer to the worst or best case



int sum(int arr[], int n, int i){
if (i == n – 1){

return arr[i];
}
else{

return arr[i] + sum(arr, n, i + 1);
}

}

O(n)
Assume there is a calling function 
that calls sum(arr, size, 0) 



 The analysis of a recursive function revolves 
around the number of recursive calls made

▪ And the running time of a single recursive call

 In the sum example the amount of a single 
function call is constant

▪ It is not dependent on the size of the array

▪ One recursive call is made for each element of the 
array



 One way of analyzing a recursive algorithm is 
to draw a tree of the recursive calls

▪ Determine the depth of the tree

▪ And the running time of each level of the tree

 In Quicksort the partition algorithm is 
responsible for partitioning sub-arrays

▪ That at any level of the recursion tree make up the 
entire array when aggregated

▪ Therefore each level of the tree entails O(n) work



n

n/2 n/2

n/4 n/4

...

1

n/4 n/4

1... n sub-arrays of size 1 ... 

At each level the partition
process performs roughly n
operations, how many
levels are there?

At each level the sub-array
size is half the size of the
previous level

O(log(n)) levels

Multiply the work at each
level by number of levels

O(n * log(n))



n

n-1

1

n-2

...

At each level the partition
process performs roughly n
operations, how many
levels are there?

At each level the sub-array
size is one less than the size
of the previous level

O(n) levels

Multiply the work at each
level by levels

O(n2)



 The running time of the recursive Fibonacci 
function we looked at was painfully slow

▪ But just how bad was it?

▪ Let's consider a couple of possible running times

▪ O(n2)

▪ O(2n)

 We will use another tool to reason about the 
running time

▪ Induction



int fib(int n)
if(n == 0 || n == 1)

return n
else

return fib(n-1) + fib(n-2)
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fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(1) fib(0)fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(1)

1

1 1 1

1

0 0

0

1

12 1

3 2

5

Cleary this is not an efficient algorithm but just how bad is it?



 Let's assume that it is O(n2)

▪ Although this isn't supported by the recursion tree

 Base case –T(n  1) = O(1)

▪ True, since only 2 operations are performed

 Inductive hypothesis: T(n-1) = (n-1)2

 Inductive proof – prove that T(n) = n2 given hypothesis

▪ we claim that: n2  (n-1)2 + (n-2)2

▪ n2  (n2 - 2n + 2) + (n2 - 4n + 4)

▪ n2  2n2 - 6n + 6

▪ But 2n2 - 6n + 6 > n2, the inductive hypothesis is not proven



 Let's assume that it is O(2n)

 Base case –T(n  1) = O(1)

▪ True, since only 2 operations are performed

 Inductive hypothesis: T(n-1) = 2n-1

 Inductive proof – prove that T(n) = 2n

▪ 2n  2n-1 + 2n-2

▪ Since 2n = 2n-1 + 2n-1, 2n is greater than 2n-1 + 2n-2

▪ The inductive hypothesis is proven


