O Notation Examples
O Notation Categories

- $O(1)$ – constant time
 - The time is independent of n
- $O(\log n)$ – logarithmic time
 - Usually the log is to the base 2
- $O(n)$ – linear time
- $O(n\log n)$
- $O(n^2)$ – quadratic time
- $O(n^k)$ – polynomial (where k is some constant)
- $O(2^n)$ – exponential time
// PRE: arr is sorted
int maxSorted(int arr[], int n){
 return arr[n-1];
}

O(1)
int max(int arr[], int n) {
 int maximum = arr[0];
 for (int i = 0; i < n; ++i) {
 if (arr[i] > maximum) {
 maximum = arr[i];
 }
 }
 return maximum;
}

$O(n)$
What is the difference between the two `max` functions?

- The first always looks at the last element of the array
 - Arrays support random access so the time it takes to retrieve this value is not dependent on the array size
- The second contains a for loop

The for loop in the `max` function iterates n times

- The loop control variable starts at 0, goes up by 1 for each loop iteration and the loop ends when it reaches n

If a function contains a for loop is it always $O(n)$?

- Not necessarily
float approximateMean(int arr[], int n){
 float sum = 0;
 for (int i=0; i < n; i+=10){
 sum += arr[i];
 }
 return sum / (n / 10.0);
}

$T_A = 0.3n + 3$

$O(n)$
```cpp
bool search(int arr[], int n, int x){
    int low = 0;
    int high = n - 1;
    int mid = 0;
    while (low <= high){
        mid = (low + high) / 2;
        if(x > arr[mid]){  
            low = mid + 1;
        } else if(x < arr[mid]) {
            high = mid - 1;
        } else {  // x == arr[mid]
            return true;
        }
    }  //while
    return false;
}
```

Average and worst case

$O(\log(n))$
Analyzing Loops

- It is important to analyze how many times a loop iterates
 - By considering how the loop control variable changes through each iteration
- Be careful to ignore constants
 - Consider how the running time would change if the input doubled
 - In an $O(n)$ algorithm the running time will double
 - In a $O(\log(n))$ algorithm it increases by 1
float mean(int arr[], int n) {
 float sum = 0;
 for (int i = 0; i < n; ++i) {
 sum += arr[i];
 }
 return sum / n;
}
Variance

```c
int stupidVariance(int arr[], int n)
{
    float result = 0;
    float sqDiff = 0;
    for (int i=0; i < n; ++i){
        sqDiff = arr[i] - mean(arr, n);
        sqDiff *= sqDiff;
        result += sqDiff;
    }
    return result;
}
```

How could this be improved?

$O(n^2)$
float variance(int arr[], int n)
{
 float result = 0;
 float avg = mean(arr, n);
 for (int i=0; i < n; ++i){
 float sqDiff = arr[i] - avg;
 sqDiff *= sqDiff;
 result += sqDiff;
 }
 return result;
}

$T_A = T_{mean} + 5n + 4$

$O(n)$
void bubble(int arr[], int n) {
 bool swapped = true;
 while (swapped) {
 swapped = false;
 for (int i = 0; i < n - 1; ++i) {
 if (arr[i] > arr[i + 1]) {
 int temp = arr[i];
 arr[i] = arr[i + 1];
 arr[i + 1] = temp;
 swapped = true;
 }
 }
 }
}

Average and worst case $O(n^2)$

Best case?
void duplicates(int arr[], int n)
{
 for(int i=0; i < n; ++i){
 for (int j=0; j < n; ++j){
 if(i != j){
 if (arr[i] == arr[j])
 return true;
 }
 }
 }
 return false;
}
The (stupid) variance, bubble and duplicates functions contain nested loops

- Both the inner loops perform $O(n)$ iterations
 - In variance the inner loop is contained in a function
- And the outer loops also perform $O(n)$ iterations

The functions are therefore $O(n^2)$

- Make sure that you check to see how many times both loops iterate
int foo(int arr[], int n) {
 int result = 0;
 int i = 0;
 while (i < n / 2) {
 result += arr[i];
 i += 1;
 }
 while (i >= n / 2 && i < n) {
 result += arr[i];
 i += 1;
 }
 return result;
}
bool alphaOrder(string s){
 int end = s.size() - 1;
 for (int i = 0; i < end; ++i){
 if (s[i] > s[i+1]){
 return false;
 }
 }
 return true;
}
Best case and worst case analysis are often relatively straightforward
 - Although they require a solid understanding of the algorithm's behaviour

Average case analysis can be more difficult
 - It may involve a more complex mathematical analysis of the function's behaviour
 - But can sometimes be achieved by considering whether it is closer to the worst or best case
Recursive Sum

```c
int sum(int arr[], int n, int i){
    if (i == n - 1){
        return arr[i];
    }
    else{
        return arr[i] + sum(arr, n, i + 1);
    }
}
```

Assume there is a calling function that calls `sum(arr, size, 0)`
The analysis of a recursive function revolves around the number of recursive calls made:
- And the running time of a single recursive call.
- In the *sum* example the amount of a single function call is constant:
 - It is not dependent on the size of the array.
 - One recursive call is made for each element of the array.
One way of analyzing a recursive algorithm is to draw a tree of the recursive calls

- Determine the depth of the tree
- And the running time of each level of the tree

In Quicksort the partition algorithm is responsible for partitioning sub-arrays

- That at any level of the recursion tree make up the entire array when aggregated
- Therefore each level of the tree entails $O(n)$ work
At each level the partition process performs roughly n operations, how many levels are there?

At each level the sub-array size is half the size of the previous level.

$O(\log(n))$ levels

Multiply the work at each level by number of levels

$O(n \times \log(n))$
At each level the partition process performs roughly n operations, how many levels are there?

At each level the sub-array size is one less than the size of the previous level.

$O(n)$ levels

Multiply the work at each level by levels

$O(n^2)$
The running time of the recursive Fibonacci function we looked at was painfully slow

- But just how bad was it?
- Let's consider a couple of possible running times
 - $O(n^2)$
 - $O(2^n)$

- We will use another tool to reason about the running time
 - Induction
Analysis of \(\text{fib}(5) \)

```c
int \text{fib}(\text{int } n)
    \{
        \text{if} (n == 0 || n == 1) 
            \text{return } n 
        \text{else} 
            \text{return } \text{fib}(n-1) + \text{fib}(n-2)
    \}
```

Clearly this is not an efficient algorithm but just how bad is it?
Let's assume that it is $O(n^2)$
- Although this isn't supported by the recursion tree
- Base case – $T(n \leq 1) = O(1)$
 - True, since only 2 operations are performed
- Inductive hypothesis: $T(n-1) = (n-1)^2$
- Inductive proof – prove that $T(n) = n^2$ given hypothesis
 - we claim that: $n^2 \geq (n-1)^2 + (n-2)^2$
 - $n^2 \geq (n^2 - 2n + 2) + (n^2 - 4n + 4)$
 - $n^2 \geq 2n^2 - 6n + 6$
 - But $2n^2 - 6n + 6 > n^2$, the inductive hypothesis is not proven
Let's assume that it is $O(2^n)$

Base case – $T(n \leq 1) = O(1)$
- True, since only 2 operations are performed

Inductive hypothesis: $T(n-1) = 2^{n-1}$

Inductive proof – prove that $T(n) = 2^n$
- $2^n \geq 2^{n-1} + 2^{n-2}$
- Since $2^n = 2^{n-1} + 2^{n-1}$, 2^n is greater than $2^{n-1} + 2^{n-2}$
- The inductive hypothesis is proven