O Notation Examples

O Notation Categories

O(1) — constant time
The time is independent of n
O(log n) — logarithmic time
Usually the log is to the base 2
O(n) — linear time
O(n*logn)
O(n?) — quadratic time
O(n*) — polynomial (where k is some constant)
O(2") — exponential time

Maximum Value in an Array

// PRE: arr 1s sorted
int maxSorted(int arr[], int n){
return arr[n-1];

) 0(1)

Maximum Value in an Array

int max(int arr[], int n){
int maximum = arr[0];
for (int 1=0; 1 < n; ++1){
if arr[i1] > maximum {
maximum = arr[i];

} O(n)
} n

return maximum;

Loops

What is the difference between the two max
functions?

The first always looks at the last element of the array

Arrays support random access so the time it takes to retrieve this
value is not dependent on the array size

The second contains a for loop

The for loop in the max function iterates n times
The loop control variable starts at o, goes up by 1 for each
loop iteration and the loop ends when it reaches n

If a function contains a for loop is it always O(n)?

Not necessarily

Mean By Sampling

float approximateMean(int arr[], int n){
float sum = ©;

for (int 1=0; 1 < n; i+=10){

sum += arr[i];
} T,=0.3n+3
return sum / (n / 10.0);

} o(n)

Binary Search

bool search(int arr[], int n, int x){
int low = 0;
int high = n - 1;
int mid = ©;
while (low <= high){
mid = (low + high) / 2;
if(x > arr[mid]){
low = mid + 1;
} else if(x < arr[mid]) {
high = mid - 1;

}
else { // x == arr[mid]
return true;
} O(log(n))
} //while
return false; Average and worst case

¥

John Edgar 7

Analyzing Loops

It is important to analyze how many times a
loop iterates

By considering how the loop control variable
changes through each iteration

Be careful to ignore constants

Consider how the running time would change if
the input doubled

In an O(n) algorithm the running time will double
In a O(log(n)) algorithm it increases by 1

float mean(int arr[], int n){
float sum = ©;

for (int 1=0; 1 < n; ++1){
sum += arr[i];

}

return sum / n;

O(n)

Variance

int stupidVariance(int arr[], int n)

{
float result

float sgDiff
for (int i=0; i < n; ++i){
sgDiff = arr[i] -Imean(arr, n);
sgDiff *= sqgDiff;
result += sqDiff;
} O(n?)
return result;

9;
0,

How could this be improved?

Less Stupid Variance

float variance(int arr[], int n)
{
float result = 0;
float avg = mean(arr, n);
for (int i=0; i < n; ++i){
float sgDiff = arr[1] - avg;
sgDiff *= sgDiff;

result += sgDiff; Tp=Tmean + 5N+ 4

mean

¥

return result; o(n)

Bubble

void bubble(int arr[], int n)
{
bool swapped = true;
while(swapped){
swapped = false;
for (int 1=0; i < n-1; ++1){
if(arr[i] > arr[i+1]){
int temp = arr[i];
arr[i] = arr[i+l];
arr[i+1] = temp;
swapped = true;

} } Average and worst case O(n?)

} Best case?

Duplicates

void duplicates(int arr[], int n)

{
for(int i=0; i < n; ++1i){
for (int j=0; j < n; ++j){
if(1i =)
if (arr[i] == arr[j])
return true;

In worst case O(n?)

¥

h Best case?
return false;

} Average case?

Nested Loops

The (stupid) variance, bubble and duplicates
functions contain nested loops
Both the inner loops perform O(n) iterations
In variance the inner loop is contained in a function
And the outer loops also perform O(n) iterations

The functions are therefore O(n?)

Make sure that you check to see how many times
both loops iterate

Another Nested Loop

int foo(int arr[], int n){
int result = 0;
int 1 = 0;
while (i < n / 2){
result += arr[i];
i += 1;
while (i >= n / 2 & i < n){
result += arr[i];
i += 1;

\ } O(n)

return result;

¥

Alphabetical Order

bool alphaOrder(string s){
int end = s.size() - 1;
for (int 1 = 0; 1 < end; ++1i){
if (s[1i] > s[i+1]){
return false;

Best case - O(1)

}

}
return true; Average case - 7
} Worst case - O(n)

Best, Average and Worst Case

Best case and worst case analysis are often
relatively straightforward

Although they require a solid understanding of
the algorithm's behaviour
Average case analysis can be more difficult

It may involve a more complex mathematical
analysis of the function's behaviour

But can sometimes be achieved by considering
whether it is closer to the worst or best case

Recursive Sum

int sum(int arr[], int n, int 1i){
if (i == n - 1){
return arr[i];

}
else{
return arr[i] + sum(arr, n, i + 1);
}
¥
oot callssomem s o) | O(n)

Recursive Functions

The analysis of a recursive function revolves
around the number of recursive calls made

And the running time of a single recursive call
In the sum example the amount of a single
function call is constant

It is not dependent on the size of the array

One recursive call is made for each element of the
array

Quicksort Analysis

One way of analyzing a recursive algorithm is
to draw a tree of the recursive calls
Determine the depth of the tree

And the running time of each level of the tree
In Quicksort the partition algorithm is
responsible for partitioning sub-arrays

That at any level of the recursion tree make up the
entire array when aggregated

Therefore each level of the tree entails O(n) work

Quicksort Best Case

n At each level the partition
process performs roughly n
operations, how many
?
n/2 n/2 levels are there?

At each level the sub-array
size is half the size of the

n/4 n/4 N/4 n/4 previous level
O(log(n)) levels
Multiply the work at each
level by number of levels
1 ... nsub-arrays of size1... 1

O(n * log(n))

Quicksort Worst Case

n-1

At each level the partition
process performs roughly n
operations, how many
levels are there?

At each level the sub-array

size is one less than the size
of the previous level

O(n) levels

Multiply the work at each
level by levels

O(n?)

Recursive Fibonacci Analysis

The running time of the recursive Fibonacci
function we looked at was painfully slow

But just how bad was it?

Let's consider a couple of possible running times
O(n?)
O(2")
We will use another tool to reason about the
running time

Induction

Analysis of fib(x)

int fib(int n)
if(n ==0 || n==1) 5
return n
else
return fib(n-1) + fib(n-2) fib(s)
3 2
fib(4) fib(3)
2 1 1 1
fib(3) fib(2) fib(2) fib(2)
1 1 1 0 1 0
fib(2) fib(2) fib(2) fib(o) fib(1) fib(o)
1 0
fib(a2) fib(o) Cleary this is not an efficient algorithm but just how bad is it?

John Edgar 24

Fibonacci Analysis - 1

Let's assume that it is O(n?)

Although this isn't supported by the recursion tree

Base case—-T(n<1)=0(1)

True, since only 2 operations are performed

Inductive hypothesis: T(n-1) = (n-1)?

Inductive proof — prove that T(n) = n? given hypothesis
we claim that: n?> > (n-1)2 + (n-2)2
nz>(n2-2n+2)+(nN?-4n+4)
n>2n%*-6n+6

But 2n?- 6n + 6 > n?, the inductive hypothesis is not proven

Fibonacci Analysis - 2

Let's assume that it is O(2")
Base case—-T(n<1)=0(1)

True, since only 2 operations are performed
Inductive hypothesis: T(n-1) = 2"
Inductive proof — prove that T(n) = 2"

21 22 + 22
Since 2" = 2" + 2™ 27 s greater than 2" + 272

The inductive hypothesis

