


 O(1) – constant time

▪ The time is independent of n

 O(log n) – logarithmic time

▪ Usually the log is to the base 2

 O(n) – linear time
 O(n*logn)
 O(n2) – quadratic time
 O(nk) – polynomial (where k is some constant)

 O(2n) – exponential time



// PRE: arr is sorted
int maxSorted(int arr[], int n){

return arr[n-1];
} O(1)



int max(int arr[], int n){
int maximum = arr[0];
for (int i=0; i < n; ++i){

if arr[i] > maximum {
maximum = arr[i];

}
}
return maximum;

}

O(n)



 What is the difference between the two max
functions?

▪ The first always looks at the last element of the array
▪ Arrays support random access so the time it takes to retrieve this 

value is not dependent on the array size

▪ The second contains a for loop

 The for loop in the max function iterates n times

▪ The loop control variable starts at 0, goes up by 1 for each 
loop iteration and the loop ends when it reaches n

 If a function contains a for loop is it always O(n)?

▪ Not necessarily



float approximateMean(int arr[], int n){
float sum = 0;
for (int i=0; i < n; i+=10){

sum += arr[i];
}
return sum / (n / 10.0);

} O(n)

TA =0.3n + 3



bool search(int arr[], int n, int x){
int low = 0;
int high = n - 1;
int mid = 0;
while (low <= high){

mid = (low + high) / 2;
if(x > arr[mid]){

low = mid + 1;
} else if(x < arr[mid]) {

high = mid - 1;
}
else { // x == arr[mid]

return true;
}

} //while
return false; 

}
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O(log(n))

Average and worst case



 It is important to analyze how many times a 
loop iterates

▪ By considering how the loop control variable 
changes through each iteration

 Be careful to ignore constants

▪ Consider how the running time would change if 
the input doubled

▪ In an O(n) algorithm the running time will double

▪ In a O(log(n)) algorithm it increases by 1



float mean(int arr[], int n){
float sum = 0;
for (int i=0; i < n; ++i){

sum += arr[i];
}
return sum / n;

}

O(n)



int stupidVariance(int arr[], int n)
{

float result = 0;
float sqDiff = 0;
for (int i=0; i < n; ++i){

sqDiff = arr[i] – mean(arr, n);
sqDiff *= sqDiff;
result += sqDiff;

}
return result;

}
How could this be improved?

O(n2)



float variance(int arr[], int n)
{

float result = 0;
float avg = mean(arr, n);
for (int i=0; i < n; ++i){

float sqDiff = arr[i] – avg;
sqDiff *= sqDiff;
result += sqDiff;

}
return result;

}
O(n)

TA = Tmean + 5n + 4



void bubble(int arr[], int n)
{

bool swapped = true;
while(swapped){

swapped = false;
for (int i=0; i < n-1; ++i){

if(arr[i] > arr[i+1]){
int temp = arr[i];
arr[i] = arr[i+1];
arr[i+1] = temp;
swapped = true;

}
}

}
}

O(n2)Average and worst case

Best case?



void duplicates(int arr[], int n)
{

for(int i=0; i < n; ++i){
for (int j=0; j < n; ++j){

if(i != j){
if (arr[i] == arr[j])

return true;
}

}
}
return false;

}

O(n2)In worst case

Average case?

Best case?



 The (stupid) variance, bubble and duplicates

functions contain nested loops

▪ Both the inner loops perform O(n) iterations

▪ In variance the inner loop is contained in a function

▪ And the outer loops also perform O(n) iterations

 The functions are therefore O(n2)

▪ Make sure that you check to see how many times 

both loops iterate



int foo(int arr[], int n){
int result = 0;
int i = 0;
while (i < n / 2){

result += arr[i];
i += 1;
while (i >= n / 2 && i < n){

result += arr[i];
i += 1;

}
}

return result;
}

O(n)



bool alphaOrder(string s){
int end = s.size() - 1;
for (int i = 0; i < end; ++i){

if (s[i] > s[i+1]){
return false;

}
}
return true;

}

Best case - O(1)

Average case - ?

Worst case - O(n)



 Best case and worst case analysis are often 
relatively straightforward

▪ Although they require a solid understanding of 
the algorithm's behaviour

 Average case analysis can be more difficult

▪ It may involve a more complex mathematical 
analysis of the function's behaviour

▪ But can sometimes be achieved by considering 
whether it is closer to the worst or best case



int sum(int arr[], int n, int i){
if (i == n – 1){

return arr[i];
}
else{

return arr[i] + sum(arr, n, i + 1);
}

}

O(n)
Assume there is a calling function 
that calls sum(arr, size, 0) 



 The analysis of a recursive function revolves 
around the number of recursive calls made

▪ And the running time of a single recursive call

 In the sum example the amount of a single 
function call is constant

▪ It is not dependent on the size of the array

▪ One recursive call is made for each element of the 
array



 One way of analyzing a recursive algorithm is 
to draw a tree of the recursive calls

▪ Determine the depth of the tree

▪ And the running time of each level of the tree

 In Quicksort the partition algorithm is 
responsible for partitioning sub-arrays

▪ That at any level of the recursion tree make up the 
entire array when aggregated

▪ Therefore each level of the tree entails O(n) work



n

n/2 n/2

n/4 n/4

...

1

n/4 n/4

1... n sub-arrays of size 1 ... 

At each level the partition
process performs roughly n
operations, how many
levels are there?

At each level the sub-array
size is half the size of the
previous level

O(log(n)) levels

Multiply the work at each
level by number of levels

O(n * log(n))



n

n-1

1

n-2

...

At each level the partition
process performs roughly n
operations, how many
levels are there?

At each level the sub-array
size is one less than the size
of the previous level

O(n) levels

Multiply the work at each
level by levels

O(n2)



 The running time of the recursive Fibonacci 
function we looked at was painfully slow

▪ But just how bad was it?

▪ Let's consider a couple of possible running times

▪ O(n2)

▪ O(2n)

 We will use another tool to reason about the 
running time

▪ Induction



int fib(int n)
if(n == 0 || n == 1)

return n
else

return fib(n-1) + fib(n-2)
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fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(1) fib(0)fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(1)

1

1 1 1

1

0 0

0

1

12 1

3 2

5

Cleary this is not an efficient algorithm but just how bad is it?



 Let's assume that it is O(n2)

▪ Although this isn't supported by the recursion tree

 Base case –T(n  1) = O(1)

▪ True, since only 2 operations are performed

 Inductive hypothesis: T(n-1) = (n-1)2

 Inductive proof – prove that T(n) = n2 given hypothesis

▪ we claim that: n2  (n-1)2 + (n-2)2

▪ n2  (n2 - 2n + 2) + (n2 - 4n + 4)

▪ n2  2n2 - 6n + 6

▪ But 2n2 - 6n + 6 > n2, the inductive hypothesis is not proven



 Let's assume that it is O(2n)

 Base case –T(n  1) = O(1)

▪ True, since only 2 operations are performed

 Inductive hypothesis: T(n-1) = 2n-1

 Inductive proof – prove that T(n) = 2n

▪ 2n  2n-1 + 2n-2

▪ Since 2n = 2n-1 + 2n-1, 2n is greater than 2n-1 + 2n-2

▪ The inductive hypothesis is proven


