
CMPT 225

 Measuring algorithm efficiency
▪ Timing

▪ Counting

 Cost functions
▪ Cases

▪ Best case

▪ Average case

▪ Worst case

▪ Searching

▪ Sorting

 O Notation
▪ O notation's mathematical basis

▪ O notation classes

▪  and  notations

John Edgar 2

 Algorithms can be described in terms of time and space
efficiency

 Time

▪ How long, in ms, does my algorithm take to solve a particular
problem?

▪ How much does the time increase as the problem size
increases?

▪ How does my algorithm compare to other algorithms?

 Space

▪ How much memory space does my algorithm
require to solve the problem?

John Edgar 4

 Choosing an appropriate algorithm can make a

significant difference in the usability of a system

▪ Government and corporate databases with many millions

of records, which are accessed frequently

▪ Online search engines and media platforms

▪ Big data

▪ Real time systems where near instantaneous response is

required

▪ From air traffic control systems to computer games

John Edgar 5

 There are often many ways to solve a problem

▪ Different algorithms that produce the same results
▪ e.g. there are numerous sorting algorithms

 We are usually interested in how an algorithm
performs when its input is large

▪ In practice, with today's hardware, most algorithms will
perform well with small input

▪ There are exceptions to this, such as the Traveling
Salesman Problem
▪ Or the recursive Fibonacci algorithm presented previously …

John Edgar 6

 It is possible to count the number of operations that
an algorithm performs

▪ By a careful visual walkthrough of the algorithm or by

▪ Inserting code in the algorithm to count and print the
number of times that each line executes

 It is also possible to time algorithms

▪ Compare system time before and after running an
algorithm
▪ More sophisticated timer classes exist

▪ Simply timing an algorithm may ignore a variety of issues

John Edgar 7

profiling

 It may be useful to time how long an algorithm
takes to rum

▪ In some cases it may be essential to know how long an
algorithm takes on a particular system

▪ e.g. air traffic control systems

▪ Running time may be a strict requirement for an application

 But is this a good general comparison method?

▪ Running time is affected by a number of factors other
than algorithm efficiency

John Edgar 8

 CPU speed
 Amount of main memory
 Specialized hardware (e.g. graphics card)
 Operating system
 System configuration (e.g. virtual memory)
 Programming language
 Algorithm implementation
 Other programs
 System tasks (e.g. memory management)
 …

John Edgar 9

 Instead of timing an algorithm, count the number of
instructions that it performs

 The number of instructions performed may vary
based on

▪ The size of the input

▪ The organization of the input

 The number of instructions can be written as a cost
function on the input size

John Edgar 10

John Edgar 11

Operations performed on
an array of length 10

|

declare and
initialize i

perform comparison,
print array element, and

increment i:10 times

||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |

make
comparison
when i = 10

32 operations

void printArray(int arr[], int n){

for (int i = 0; i < n; ++i){

cout << arr[i] << endl;

}
}

 Instead of choosing a particular input size we will
express a cost function for input of size n

▪ We assume that the running time, t, of an algorithm is
proportional to the number of operations

 Express t as a function of n

▪ Where t is the time required to process the data using
some algorithm A

▪ Denote a cost function as tA(n)

▪ i.e. the running time of algorithm A, with input size n

John Edgar 12

John Edgar 13

Operations performed on
an array of length n

1

declare and
initialize i

perform comparison,
print array element, and

increment i: n times

3n 1

make
comparison
when i = n

t = 3n + 2

void printArray(int arr[], int n){

for (int i = 0; i < n; ++i){

cout << arr[i] << endl;

}
}

 In the example we assumed two things

▪ Neither of which are strictly true …

 Any C++ statement counts as a single operation

▪ Unless it is a function call

 That all operations take the same amount of time

▪ Some fundamental operations are faster than others

▪ What is a fundamental operation in a high level
language is multiple operations in assembly

 These are both simplifying assumptions

John Edgar 14

 The number of operations often varies based on the
size of the input

▪ Though not always – consider array lookup

 In addition algorithm performance may vary based
on the organization of the input

▪ For example consider searching a large array

▪ If the target is the first item in the array the search will be
very fast

John Edgar 15

 Algorithm efficiency is often calculated for three
broad cases of input

▪ Best case

▪ Average (or “usual”) case

▪ Worst case

 This analysis considers how performance varies
for different inputs of the same size

John Edgar 16

 It can be difficult to determine the exact number of
operations performed by an algorithm
▪ Though it is often still useful to do so

 An alternative to counting all instructions is to focus
on an algorithm's barometer instruction
▪ The barometer instruction is the instruction that is executed

the most number of times in an algorithm

▪ The number of times that the barometer instruction is
executed is usually proportional to its running time

John Edgar 17

 It is often useful to find out whether or not a list
contains a particular item

▪ Such a search can either return true or false

▪ Or the position of the item in the list

 If the array isn't sorted use linear search

▪ Start with the first item, and go through the array
comparing each item to the target

▪ If the target item is found return true (or the index of
the target element)

John Edgar 19

int linearSearch(int arr[], int n, int x){
for (int i=0; i < n; i++){

if(arr[i] == x){
return i;

}
} //for
return -1; //target not found

}

John Edgar 20

The function returns as soon as
the target item is found

return -1 to indicate that the
item has not been found

tlinear search = 3n+2Worst case cost function:

 Search an array of n items
 The barometer instruction is equality checking (or

comparisons for short)

▪ arr[i] == x;

▪ There are actually two other barometer instructions
▪ What are they?

 How many comparisons does linear search perform?

John Edgar 21

int linearSearch(int arr[], int n, int x){
for (int i=0; i < n; i++){

if(arr[i] == x){
return i;

}
} //for
return -1; //target not found

}

look for barometer operations in
loops, or functions, or recursive calls

the barometer operation is the most
frequently executed operation

 Best case

▪ The target is the first element of the array

▪ Makes 1 comparison

 Worst case

▪ The target is not in the array or

▪ The target is at the last position in the array

▪ Makes n comparisons in either case

 Average case

▪ Is it (best case + worst case) / 2, i.e. (n + 1) / 2?

John Edgar 22

 There are two situations when the worst case occurs

▪ When the target is the last item in the array

▪ When the target is not there at all

 To calculate the average cost we need to know how

often these two situations arise

▪ We can make assumptions about this

▪ Though these assumptions may not hold for a particular

use of linear search

John Edgar 23

 A1: The target is not in the array half the time

▪ Therefore half the time the entire array has to be
checked to determine this

 A2: There is an equal probability of the target
being at any array location

▪ If it is in the array

▪ That is, there is a probability of 1/n that the target
is at some location i

John Edgar 24

 Work done if the target is not in the array

▪ n comparisons

▪ This occurs with probability of 0.5 (A1)

John Edgar 25

 Work done if target is in the array:

▪ 1 comparison if target is at the 1st location
▪ Occurs with probability 1/n (A2)

▪ 2 comparisons if target is at the 2nd location
▪ Also occurs with probability 1/n

▪ i comparisons if target is at the ith location

 Take the weighted average of the values to find the
total expected number of comparisons (E)

▪ E = 1*1/n + 2*1/n + 3*1/n + … + n * 1/n or

▪ E = (n + 1) / 2

John Edgar 26

 Target is not in the array: n comparisons
 Target is in the array (n + 1) / 2 comparisons
 Take a weighted average of the two amounts:

▪ = (n * ½) + ((n + 1) / 2 * ½)

▪ = (n / 2) + ((n + 1) / 4)

▪ = (2n / 4) + ((n + 1) / 4)

▪ = (3n + 1) / 4

 Therefore, on average, we expect linear search to
perform (3n + 1) / 4 comparisons

John Edgar 27

 If we sort the target array first we can change the
linear search average cost to approximately n / 2

▪ Once a value equal to or greater than the target is found
the search can end

▪ So, if a sequence contains 8 items, on average, linear
search compares 4 of them,

▪ If a sequence contains 1,000,000 items, linear search
compares 500,000 of them, etc.

 However, if the array is sorted, it is possible to do
much better than this by using binary search

John Edgar 28

int binarySearch(int arr[], int n, int x){
int low = 0;
int high = n - 1;
int mid = 0;
while (low <= high){

mid = (low + high) / 2;
if(x == arr[mid]){

return mid;
} else if(x > arr[mid]){

low = mid + 1;
} else { //x < arr[mid]

high = mid - 1;
}

} //while
return -1; //target not found

}
John Edgar 29

Index of the last element in the array

Note: if, else if, else

 The algorithm consists of three parts

▪ Initialization (setting lower and upper)

▪ While loop including a return statement on success

▪ Return statement which executes on failure

 Initialization and return on failure require the same
amount of work regardless of input size

 The number of times that the while loop iterates
depends on the size of the input

John Edgar 30

 The while loop contains an if, else if, else statement
 The first if condition is met when the target is found

▪ And is therefore performed at most once each time the
algorithm is run

 The algorithm usually performs 5 operations for each
iteration of the while loop

▪ Checking the while condition

▪ Assignment to mid

▪ Equality comparison with target

▪ Inequality comparison

▪ One other operation (setting either lower or upper)

John Edgar 31

Barometer instructions

 In the best case the target is the midpoint
element of the array

▪ Requiring just one iteration of the while loop

John Edgar 32

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid = (0 + 7) / 2 = 3

binary search (arr, 11)

 What is the worst case for binary search?

▪ Either the target is not in the array, or

▪ It is found when the search space consists of one
element

 How many times does the while loop iterate
in the worst case?

John Edgar 33

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid =

binary search (arr, 20)

(0 + 7) / 2 = 3 (4 + 7) / 2 = 5 (6 + 7) / 2 = 6 (7 + 7) / 2 = 7

 Each iteration of the while loop halves the search space
▪ For simplicity assume that n is a power of 2

▪ So n = 2k (e.g. if n = 128, k = 7 or if n = 8, k = 3)

 How large is the search space?
▪ After the first iteration the search space is n/2

▪ After the second iteration the search space is n/4

▪ After the kth iteration the search space consists of just one
element
▪ Note that as n = 2k, k = log2n

▪ The search space of size 1 still needs to be checked

▪ Therefore at most log2n + 1 iterations of the while loop are
made in the worst case

John Edgar 34

n/2k = n/n = 1

or n/21

or n/22

tbinary search = 5(log2(n)+1)+4Cost function:

 Is the average case more like the best case or the worst
case?

▪ What is the chance that an array element is the target

▪ 1/n the first time through the loop

▪ 1/(n/2) the second time through the loop

▪ … and so on …

 It is more likely that the target will be found as the
search space becomes small

▪ That is, when the while loop nears its final iteration

▪ We can conclude that the average case is more like the worst
case than the best case

John Edgar 35

John Edgar 36

n Linear Search

(3n+1)/4

Binary Search

log2(n)+1

10 8 4

100 76 8

1,000 751 11

10,000 7,501 14

100,000 75,001 18

1,000,000 750,001 21

10,000,000 7,500,001 25

 As an example of algorithm analysis let's look at two
simple sorting algorithms

▪ Selection Sort and

▪ Insertion Sort

 Calculate an approximate cost function for these
two sorting algorithms

▪ By analyzing how many operations are performed by
each algorithm

▪ This will include an analysis of how many times the
algorithms' loops iterate

John Edgar 38

 The array is divided into sorted part and unsorted parts
 Expand the sorted part by swapping the first unsorted element

with the smallest unsorted element

▪ Starting with the element with index 0, and

▪ Ending with the last but one element (index n – 1)

 Requires two processes

▪ Finding the smallest element of a sub-array

▪ Swapping two elements of the array

John Edgar 39

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 1 3 5 7 21 27 29 23 19 13 31 15 17 9 25 11

The algorithm is on its fifth iteration Find the smallest element in arr[4:15]

smallest: 2119139

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 1 3 5 7 21 27 29 23 19 13 31 15 17 9 25 11

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 1 3 5 7 9 27 29 23 19 13 31 15 17 21 25 11 9

 The array is divided into sorted part and unsorted parts
 Expand the sorted part by swapping the first unsorted element

with the smallest unsorted element

▪ Starting with the element with index 0, and

▪ Ending with the last but one element (index n – 1)

 Requires two processes

▪ Finding the smallest element of a sub-array

▪ Swapping two elements of the array

John Edgar 40

The algorithm is on its fifth iteration Find the smallest element in arr[4:15]

smallest:

Swap smallest and first unsorted elements

void selectionSort(int arr[], int n){
for(int i = 0; i < n-1; ++i){

int smallest = getSmallest(arr, i, n);
swap(arr, i, smallest);

}
}

John Edgar 41

int getSmallest(int arr[], int start, int end){
int smallest = start;
for(int i = start + 1; i < end; ++i){

if(arr[i] < arr[smallest]){
smallest = i;

}
}
return smallest;

}

void swap(int arr[], int i, int j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

note: end is 1 past the last
legal index

void selectionSort(int arr[], int n){
for(int i = 0; i < n-1; ++i){

int smallest = getSmallest(arr, i, n);
swap(arr, i, smallest);

}
}

John Edgar 42

int getSmallest(int arr[], int start, int end){
int smallest = start;
for(int i = start + 1; i < end; ++i){

if(arr[i] < arr[smallest]){
smallest = i;

}
}
return smallest;

}

void swap(int arr[], int i, int j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

Swap always performs three operations

n-1 swaps 3(n-1)

void selectionSort(int arr[], int n){
for(int i = 0; i < n-1; ++i){

int smallest = getSmallest(arr, i, n);
swap(arr, i, smallest);

}
}

John Edgar 43

int getSmallest(int arr[], int start, int end){
int smallest = start;
for(int i = start + 1; i < end; ++i){

if(arr[i] < arr[smallest]){
smallest = i;

}
}
return smallest;

}

4(start-end-1)+4 operations

n-1 swaps 3(n-1)

called n-1 times

we can substitute n for end

the start index is the index of
i in the calling function

the values of which are the
sequence {0,1,2,…, n-2}

1:n-1, 2:n-1, …, n-1:n-1, average = (n-1+1) / 2 = n/2 average cost = 4(n/2)+4

void selectionSort(int arr[], int n){
for(int i = 0; i < n-1; ++i){

int smallest = getSmallest(arr, i, n);
swap(arr, i, smallest);

}
}

John Edgar 44

n-1 swaps 3(n-1)

called n-1 times (n-1)(4(n/2)+4)

Cost function: tselection sort = 2n2 - 2n + 10(n-1) + 2

for loop: 3(n-1)+2

= (n-1)(2n + 4)

= 2n2-2n+4(n-1)

 The barometer operation for selection sort is
in the loop that finds the smallest item

▪ Since operations in that loop are executed the
greatest number of times

 The loop contains four operations

▪ Compare i to end

▪ Compare arr[i] to smallest

▪ Change smallest

▪ Increment i

John Edgar 45

The barometer
instructions

int getSmallest(arr[], start, end)
smallest = start
for(i = start + 1; i < end; ++i)

if(arr[i] < arr[smallest])
smallest = i

return smallest

Unsorted elements Barometer

n n-1

n-1 n-2

… …

3 2

2 1

1 0

n(n-1)/2

John Edgar 46

 How is selection sort affected by the organization of
the input?

▪ The only work that varies based on the input organization
is whether or not smallest is assigned the value of arr[i]

 What is the worst case organization?
 What is the best case organization?
 The difference between best case and worst case is

quite small

▪ (n-1)(3(n/2)) + 10(n-1) + 2 in the best case and

▪ (n-1)(4(n/2)) + 10(n-1) + 2 in the worst case

John Edgar 47

 Ignoring leading constants, selection sort performs
the following work

▪ n*(n – 1)/2 barometer operations, regardless of the
original order of the input

▪ n – 1 swaps

 The number of comparisons dominates the number
of swaps

 The organization of the input only affects the
leading constant of the barometer operations

John Edgar 48

 The array is divided into sorted part and unsorted parts
 The sorted part is expanded one element at a time

▪ By moving elements in the sorted part up one position until the
correct position for the first unsorted element is found

▪ Note that the first unsorted element is stored so that it is not lost when
it is written over by this process

▪ The first unsorted element is then copied to the insertion point

John Edgar 49

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 5 11 27 31 21 1 29 23 19 13 7 15 17 9 25 3

The algorithm is on its fourth iteration Find the correct position for arr[4]

temp: 21

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 5 11 27 31 21 1 29 23 19 13 7 15 17 9 25 3

 The array is divided into sorted part and unsorted parts
 The sorted part is expanded one element at a time

▪ By moving elements in the sorted part up one position until the
correct position for the first unsorted element is found

▪ Note that the first unsorted element’s value is stored so that it is not
lost when it is written over by this process

▪ The first unsorted element is then copied to the insertion point

John Edgar 50

The algorithm is on its fourth iteration

Move up elements in the sorted part until the position for 21 is found

temp: 21

Find the correct position for arr[4]

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 5 11 27 31 31 1 29 23 19 13 7 15 17 9 25 3

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 5 11 27 27 31 1 29 23 19 13 7 15 17 9 25 3

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 5 11 21 27 31 1 29 23 19 13 7 15 17 9 25 3

 How much work was performed by expanding the sorted part of the
array by one element?

▪ The value 21 was stored in a variable, temp

▪ The values 27 and 31 were compared to 21
▪ And moved up one position in the array

▪ The value 11 was compared to 21, but not moved

▪ The value of temp was written to arr[2]

 How much work will be performed expanding the sorted part of the array
to include the value 1?

 How much work will be performed expanding the sorted part of the array
to include the value 29?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arr 5 11 21 27 31 1 29 23 19 13 7 15 17 9 25 3

John Edgar 51

void insertionSort(int arr[], int n){
for(int i = 1; i < n; ++i){

temp = arr[i];
int pos = i;
// Shuffle up all sorted items > arr[i]
while(pos > 0 && arr[pos - 1] > temp){

arr[pos] = arr[pos – 1];
pos--;

} //while
// Insert the current item
arr[pos] = temp;

}
}

John Edgar 52

It depends on the values in the array

How often are they performed?

What are the barometer operations?

inner loop body
how many times?

void insertionSort(int arr[], int n){
for(int i = 1; i < n; ++i){

temp = arr[i];
int pos = i;
// Shuffle up all sorted items > arr[i]
while(pos > 0 && arr[pos - 1] > temp){

arr[pos] = arr[pos – 1];
pos--;

} //while
// Insert the current item
arr[pos] = temp;

}
}

John Edgar 53

worst case: pos – 1 times for each iteration

outer loop
n-1 times

What is the worst case organization? outer loop runs n-1 times: n * (n – 1) / 2

pos ranges from 1 to n-1; n/2 on average

Sorted

Elements

Worst-case
Search

Worst-case
Move

0 0 0

1 1 1

2 2 2

… … …

n-1 n-1 n-1

n(n-1)/2 n(n-1)/2

John Edgar 54

 In the worst case the array is in reverse order
 Every item has to be moved all the way to the

front of the array

▪ The outer loop runs n-1 times

▪ In the first iteration, one comparison and move

▪ In the last iteration, n-1 comparisons and moves

▪ On average, n/2 comparisons and moves

▪ For a total of n * (n-1) / 2 comparisons and moves

John Edgar 55

 The efficiency of insertion sort is affected by
the state of the array to be sorted

 What is the best case?

▪ In the best case the array is already completely
sorted!

▪ No movement of any array element is required

▪ Requires n comparisons

John Edgar 56

 What is the average case cost?

▪ Is it closer to the best case?

▪ Or the worst case?

 If random data is sorted, insertion sort is
usually closer to the worst case

▪ Around n * (n-1) / 4 comparisons

 And what do we mean by average input for a
sorting algorithm in anyway?

John Edgar 57

 Quicksort is a more efficient sorting algorithm than
either selection or insertion sort

▪ It sorts an array by repeatedly partitioning it

 Partitioning is the process of dividing an array into
sections (partitions), based on some criteria

▪ Big and small values

▪ Negative and positive numbers

▪ Names that begin with a-m, names that begin with n-z

▪ Darker and lighter pixels

John Edgar 59

John Edgar 60

Partition this array into
small and big values using a
partitioning algorithm

31 12 07 23 93 02 11 18

John Edgar 61

Partition this array into
small and big values using a
partitioning algorithm

We will partition the array
around the last value (18),
we'll call this value the pivot

31 12 07 23 93 02 11 18

Use two indices, one at
each end of the array, call
them low and high

18

John Edgar 62

31 12 07 23 93 02 11 18

arr[low] (31) is greater than the pivot
and should be on the right, we need to
swap it with something

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 63

31 12 07 23 93 02 11 18

arr[low] (31) is greater than the pivot
and should be on the right, we need to
swap it with something

arr[high] (11) is less than the pivot so
swap with arr[low]

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 64

31 12 07 23 93 02 11 183111

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 65

12 07 23 93 02 18

increment low until it needs to be
swapped with something

3111 12 07

then decrement high until it can be
swapped with low

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 66

12 07 23 93 02 18

and then swap them

31230211 12 07

increment low until it needs to be
swapped with something

then decrement high until it can be
swapped with low

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 67

12 07 93 18

repeat this process until

31230211

high and low are the same

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 68

repeat this process until

high and low are the same

We'd like the pivot value to be in the
centre of the array, so we will swap it
with the first item greater than it

12 07 93 1831230211 9318

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 69

smalls bigs
pivot

12 07 9318 31230211

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 70

Use the same algorithm to
partition this array into small
and big values

00 08 07 01 06 02 05 09

bigs!
pivot

00 08 07 01 06 02 05 09

smalls

John Edgar 71

Or this one:

09 08 07 06 05 04 02 01

bigs
pivot

01 08 07 06 05 04 02 09

smalls

 The quicksort algorithm works by repeatedly
partitioning an array

 Each time a sub-array is partitioned there is

▪ A sequence of small values,

▪ A sequence of big values, and

▪ A pivot value which is in the correct position

 Partition the small values, and the big values

▪ Repeat the process until each sub-array being partitioned
consists of just one element

John Edgar 72

 The quicksort algorithm repeatedly partitions
an array until it is sorted

▪ Until all partitions consist of at most one element

 A simple iterative approach would halve each
sub-array to get partitions

▪ But partitions are not necessarily the same size

▪ So the start and end indexes of each partition are
not easily predictable

John Edgar 73

47 70 36 97 03 67 29 11 48 09 53

09 29 48 03 47 97

03 11 29 48 61

11

John Edgar 74

36 11 61 70

36 09 97

08 01 36

1109 03

0903

53

7047

29

11

53

48 61 977047 53

3629 48 61 977047 53

3629 48 61 977047 53

 One way to implement quicksort might be to
record the index of each new partition

 But this is difficult and requires a reasonable
amount of space

▪ The goal is to record the start and end index of
each partition

▪ This can be achieved by making them the
parameters of a recursive function

John Edgar 75

void quicksort(arr[], int low, int high){

if (low < high){

pivot = partition(arr, low, high);

quicksort(arr, low, pivot – 1);

quicksort(arr, pivot + 1, high);
}

}

John Edgar 76

 How long does Quicksort take to run?

▪ Let's consider the best and the worst case

▪ These differ because the partitioning algorithm may not
always do a good job

 Let's look at the best case first

▪ Each time a sub-array is partitioned the pivot is the exact
midpoint of the slice (or as close as it can get)
▪ So it is divided in half

▪ What is the running time?

John Edgar 77

John Edgar 78

08 01 02 07 03 06 04 05

bigs
pivot

04 01 02 03 05 06 08 07

smalls

First partition

John Edgar 79

big1
pivot1

02 01 04 05 06 08

sm1

04 01 02 03 05 06 08 07

Second partition

0703

pivot1 pivot2

pivot2
big2sm2

John Edgar 80

pivot1

02 03 04 05 06 07 08

Third partition

02 01 03 04 05 06 07 08

pivot1 donedonedone

01

John Edgar 81

Assume the best case – each partition splits its sub-array in half

qs(arr, 0, n-1)

sub-array
size

n

qs(…) qs(…) qs(…) qs(…)

n/2

n/4

qs(…)qs(…)

of recursive
calls

1

2

3

…

log2(n) qs(…) qs(…) … 1

each level entails approximately n operations

there are approximately log2(n) levels

approximately log2(n) * n operations in total

 Each sub-array is divided in half in each partition
▪ Each time a series of sub-arrays are partitioned n

(approximately) comparisons are made

▪ The process ends once all the sub-arrays left to be
partitioned are of size 1

 How many times does n have to be divided in half
before the result is 1?
▪ log2(n) times

▪ Quicksort performs n * log2n operations in the best case

John Edgar 82

First partition

John Edgar 83

09 08 07 06 05 04 02 01

bigs
pivot

01 08 07 06 05 04 02 09

smalls

John Edgar 84

bigs
pivot

01 08 07 06 05 04 02 09

smalls

01 08 07 06 05 04 02 09

Second partition

John Edgar 85

bigs
pivot

01 02 07 06 05 04 08 09

01 08 07 06 05 04 02 09

Third partition

John Edgar 86

pivot

01 02 07 06 05 04 08 09

smalls

01 02 07 06 05 04 08 09

Fourth partition

John Edgar 87

bigs
pivot

01 02 04 06 05 07 08 09

01 02 07 06 05 04 08 09

Fifth partition

John Edgar 88

pivot

01 02 04 06 05 07 08 09

smalls

01 02 04 06 05 07 08 09

Sixth partition

John Edgar 89

pivot

01 02 04 05 06 07 08 09

01 02 04 06 05 07 08 09

Seventh partition!

John Edgar 90

Assume the worst case – each partition step results in a single sub-array

qs(arr, 0, n-1)

sub-array
size

n

qs(…)

n-1

n-2

qs(…)

of recursive
calls

1

2

3

…

n qs(…) 1

each level entails on
average n/2 operations

there are approximately
n levels

approximately n2/2
operations in total

 Every partition step ends with no values on
one side of the pivot

▪ The array has to be partitioned n times, not
log2(n) times

▪ So in the worst case Quicksort performs around n2

operations

 The worst case usually occurs when the array
is nearly sorted (in either direction)

John Edgar 91

 With a large array we would have to be very,
very unlucky to get the worst case

▪ Unless there was some reason for the array to already
be partially sorted

 The average case is much more like the best
case than the worst case

 There is an easy way to fix a partially sorted
arrays to that it is ready for quicksort

▪ Randomize the positions of the array elements!

John Edgar 92

 Calculation of a detailed cost function can be
onerous and dependent on

▪ Exactly how the algorithm was implemented

▪ Implementing selection sort as a single function would
have resulted in a different cost function

▪ The definition of a single discrete operation

▪ How many operations is this: mid = (low + high) / 2?

 We are often interested in how algorithms
behave as the problem size increases

John Edgar 94

 There can be many ways to solve a problem
▪ Different algorithms that produce the same result

▪ There are numerous sorting algorithms

 Compare algorithms by their behaviour for
large input sizes, i.e., as n gets large
▪ On today’s hardware, most algorithms perform

quickly for small n
 Interested in growth rate as a function of n

▪ Sum an array: linear growth

▪ Sort with selection sort: quadratic growth

 Measuring the performance of an algorithm
can be simplified by

▪ Only considering the highest order term

▪ i.e. only consider the number of times that the
barometer instruction is executed

▪ And ignoring leading constants

 Consider the selection sort algorithm

▪ tselection sort = 2n2 - 2n + 10(n-1) + 2

▪ Its cost function approximates to n2

John Edgar 96

 What are the approximate number of barometer

operations for the algorithms we looked at?

▪ Ignoring leading constants

 Linear search: n

 Binary search: log2n

 Selection sort: n2

 Insertion sort: n2

 Quicksort: n(log2(n))

John Edgar 97

worst and average case

worst and average case

all cases

worst and average case

best and average case

 What do we want to know when comparing
two algorithms?

▪ Often, the most important thing is how quickly
the time requirements increase with input size

▪ e.g. If we double the input size how much longer
does an algorithm take?

 Here are some graphs …

John Edgar 98

John Edgar 99

Arbitrary
functions
for the
sake of
illustration

Note that n is very small …

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

O
p

e
ra

ti
o

n
s

n

log(n)

200(log(n))

n

100n

nlog(n)

5nlog(n)

n2

0.1n2

John Edgar 100

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 200 300 400 500 600 700 800 900

O
p

e
ra

ti
o

n
s

n

log(n)

200(log(n))

n

100n

nlog(n)

5nlog(n)

n2

0.1n2

John Edgar 101

0.00

100,000,000,000.00

200,000,000,000.00

300,000,000,000.00

400,000,000,000.00

500,000,000,000.00

600,000,000,000.00

700,000,000,000.00

800,000,000,000.00

900,000,000,000.00

1 100000 200000 300000 400000 500000 600000 700000 800000 900000

O
p

e
ra

ti
o

n
s

n

log(n)

200(log(n))

n

100n

nlog(n)

5nlog(n)

n2

0.1n2

John Edgar 102

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1,000,000.00

10,000,000.00

100,000,000.00

1,000,000,000.00

10,000,000,000.00

100,000,000,000.00

1,000,000,000,000.00

10 100 500 1000 5000 10000 50000 100000 500000 1000000

O
p

e
ra

ti
o

n
s

n

log(n)

200(log(n))

n

100n

nlog(n)

5nlog(n)

n2

0.1n2

Note pairs of growth rates a
constant distance apart

 Exact counting of operations is often difficult (and
tedious), even for simple algorithms

▪ And is often not much more useful than estimates due to
the relative importance of other factors

 O Notation is a mathematical language for
evaluating the running-time of algorithms

▪ O-notation evaluates the growth rate of an algorithm

John Edgar 104

 Cost Function: tA(n) = n2 + 20n + 100
▪ Which term in the function is the most important?

 It depends on the size of n
▪ n = 2, tA(n) = 4 + 40 + 100

▪ The constant, 100, is the dominating term

▪ n = 10, tA(n) = 100 + 200 + 100
▪ 20n is the dominating term

▪ n = 100, tA(n) = 10,000 + 2,000 + 100
▪ n2 is the dominating term

▪ n = 1000, tA(n) = 1,000,000 + 20,000 + 100
▪ n2 is still the dominating term

John Edgar 105

 Big-O notation does not give a precise formulation
of the cost function for a particular data size

 It expresses the general behaviour of the algorithm
as the data size n grows very large so ignores

▪ lower order terms and

▪ constants

 A Big-O cost function is a simple function of n

▪ n, n2, log2(n), etc.

John Edgar 106

 Express the number of operations in an
algorithm as a function of n, the problem size

 Briefly

▪ Take the dominant term

▪ Remove the leading constant

▪ Put O(…) around it

 For example, f(N) = 2n2 - 2n + 10(n-1) + 2

▪ i.e. O(n2)

 Of course leading constants matter
▪ Consider two algorithms

▪ f1(n) = 20n2

▪ f2(n) = 2n2

▪ Algorithm 2 runs ten times faster
 Let's consider machine speed

▪ If machine 1 is ten times faster than machine 2 it
will run the same algorithm ten times faster

 Big O notation ignores leading constants
▪ It is a hardware independent analysis

 Given a function T(n)

▪ Say that T(N) = O(f(n)) if T(n) is at most a constant
times f(n)

▪ Except perhaps for some small values of n

 Properties

▪ Constant factors don’t matter

▪ Low-order terms don’t matter

 Rules

▪ For any k and any function g(n), k*g(n) = O(f(n))

▪ e.g., 5n = O(n)

 An algorithm is said to be order f(n)

▪ Denoted as O(f(n))

 The function f(n) is the algorithm's growth
rate function

▪ If a problem of size n requires time proportional to
n then the problem is O(n)

▪ e.g. If the input size is doubled so is the running time

John Edgar 110

 An algorithm is order f(n) if there are positive
constants k and m such that

▪ tA(n)  k * f(n) for all n m
▪ i.e. find constants k and m such that the cost function is less than or

equal to k * a simpler function for all n greater than or equal to m

 If so we would say that tA(n) is O(f(n))

John Edgar 111

 Finding a constant k | tA(n)  k * f(n) shows
that t is O(f(n))
▪ e.g. If the cost function was n2 + 20n + 100 and we

believed this was O(n)
▪ We claim to be able to find a constant k | tA(n)  k * f(n)

for all values of n

▪ Which is not possible

 For some small values of n lower order terms
may dominate
▪ The constant m addresses this issue

John Edgar 112

 The idea is that a cost function can be approximated
by another, simpler, function

▪ The simpler function has 1 variable, the data size n

▪ This function is selected such that it represents an upper
bound on the value of tA(n)

 Saying that the time efficiency of algorithm A tA(n)
is O(f(n)) means that

▪ A cannot take more than O(f(n)) time to execute, and

▪ The cost function tA(n) grows at most as fast as f(n)

John Edgar 113

 An algorithm’s cost function is 3n + 12

▪ If we can find constants m and k such that:

▪ k * n  3n + 12 for all n m then

▪ The algorithm is O(n)

 Find values of k and m so that this is true

▪ k = 4, and

▪ m = 12 then

▪ 4n  3n + 12 for all n  12

John Edgar 114

 A cost function is 2n2 - 2n + 10(n-1) + 2
 If we can find constants m and k such that:

▪ k * n2  2n2 - 2n + 10(n-1) + 2 for all n m then

▪ The algorithm is O(n2)

 Find values of k and m so that this is true

▪ k = 3, and

▪ m = 9 then

▪ 3n2 > 2n2 - 2n + 10(n-1) + 2 for all n  9

John Edgar 115

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21

O
p

e
ra

ti
o

n
s

n

2n2-2n+10(n-1)+2

3n2

John Edgar 116

After this point 3n2 is always going to be
larger than 2n2 - 2n + 10(n-1) + 2

This is the graph of the selection sort cost
function and 3n2

Demonstrating that selection sort is O(n2)

For all n  9, 3(n2)  2n2 - 2n + 10(n-1) + 2

i.e. k= 3 and m = 9

 All these expressions are O(n)
▪ n, 3n

▪ 61n + 5

▪ 22n – 5
 All these expressions are O(n2)

▪ n2

▪ 9n2

▪ 18n2 + 4n – 53
 All these expressions are O(n log n)

▪ n(log n)

▪ 5n(log 99n)

▪ 18 + (4n – 2)(log (5n + 3))

John Edgar 117

 O(k * f) = O(f) if k is a constant

▪ e.g. O(23 * O(log n)), simplifies to O(log n)

 O(f + g) = max[O(f), O(g)]

▪ O(n + n2), simplifies to O(n2)

 O(f * g) = O(f) * O(g)

▪ O(m * n), equals O(m) * O(n)

▪ Unless there is some known relationship between m and n
that allows us to simplify it, e.g. m < n

John Edgar 118

 Growth rate functions are typically one of the
following

▪ O(1)

▪ O(log n)

▪ O(n)

▪ O(n*logn)

▪ O(n2)

▪ O(nk)

▪ O(2n)

John Edgar 119

 We write O(1) to indicate something that takes a
constant amount of time
▪ Array look up

▪ Swapping two values in an array

▪ Finding the minimum element of an ordered array takes O(1)
time
▪ The minimum value is either the first or the last element of the array

▪ Binary or linear search best case
 Important: constants can be large

▪ So in practice O(1) is not necessarily efficient

▪ It tells us is that the algorithm will run at the same speed no
matter the size of the input we give it

John Edgar 120

 O(logn) algorithms run in logarithmic time

▪ Binary search average and worst case

▪ The logarithm is assumed to be base 2 unless specified

otherwise

 Doubling the size of n doubles increases the number

of operations by one

 Algorithms might be O(logn)

▪ If they are divide and conquer algorithms that halve the

search space for each loop iteration or recursive call

John Edgar 121

 O(n) algorithms run in linear time

▪ Linear search

▪ Summing the contents of an array

▪ Traversing a linked list

▪ Insertion sort or bogo sort best case

 Doubling the size of n doubles the number of operations
 Algorithms might be O(n)

▪ If they contain a single loop

▪ That iterates from 0 to n (or some variation)

▪ Make sure that loops only contain constant time operations

▪ And evaluate any function calls

John Edgar 122

 O(nlogn)

▪ Mergesort in all cases

▪ Heap sort in all cases

▪ Quicksort in the average and best case

▪ O(nlogn) is the best case for comparison sorts

▪ We will not prove this in CMPT 225

 Growth rate is faster than linear but still slow compared
to O(n2)

 Algorithms are O(nlogn)

▪ If they have one process that is linear that is repeated O(logn)
times

John Edgar 123

 O(n2) algorithms run in quadratic time

▪ Selection sort in all cases

▪ Insertion sort in the average and worst case

▪ Bubble sort in all cases

▪ Quicksort worst case

 Doubling the size of n quadruples the number of
operations

 Algorithms might be O(n2)

▪ If they contain nested loops

▪ As usual make sure to check the number of iterations in such loops

▪ And that the loops do not contain non-constant function calls

John Edgar 124

 O(nk) algorithms are referred to as running in

polynomial time

▪ If k is large they can be very slow

 Doubling the size of n increases the number of

operations by 2k

John Edgar 125

 O(2n) or O(kn) algorithms are referred to as running
in exponential time

 Very slow, and if there is no better algorithm implies
that the problem is intractable

▪ That is, problems of any reasonable size cannot be solved
in a reasonable amount of time
▪ Such as over the lifetime of the human race …

 O(n!) algorithms are even slower

▪ Traveling Salesman Problems (and many others)

▪ Bogo sort in the average case

John Edgar 126

 The O notation growth rate of some algorithms
varies depending on the input

 Typically we consider three cases:

▪ Worst case, usually (relatively) easy to calculate and
therefore commonly used

▪ Average case, often difficult to calculate

▪ Best case, usually easy to calculate but less important than
the other cases
▪ Relying on the input having the best case organization is not

generally a good idea

John Edgar 127

  (omega) notation

▪ Gives a lower bound

▪ Whereas O notation is an upper bound

▪ There exists some constant k, such that k * f(n) is a lower

bound on the cost function g(n)

  (theta) notation

▪ Gives an upper and lower bound

▪ k1 * f(n) is an upper bound on g(n) and k2 * f(n) is a lower

bound on g(n)

John Edgar 128

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21

O
p

e
ra

ti
o

n
s

n

2n2-2n+10(n-1)+2

3n2

2n2

John Edgar 129

O(n2)

(n2)

