
Recursion

 Identify recursive algorithms
 Write simple recursive algorithms
 Understand recursive function calling

▪ With reference to the call stack

 Compute the result of simple recursive
algorithms

 Understand the drawbacks of recursion
 Analyze the running times of recursive functions

▪ Covered in the O Notation section

John Edgar 2

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can
be produced from that pair in a year if it is supposed that every month each pair begets a new pair which from
the second month on becomes productive?

Liber Abaci, Leonardo Pisano Bigollo (aka Fibonacci), 1202

 What happens if you put a
pair of rabbits in a field?
▪ More rabbits!

 Assumptions
▪ Rabbits take one month to

reach maturity and

▪ Each pair of rabbits
produces another pair of
rabbits one month after
mating

▪ Rabbits never die

▪ Bunny heaven!

John Edgar 4

 How many pairs of rabbits
are there after 5 months?
▪ Month 1: start – 1 pair

▪ Month 2: the rabbits are now
mature and mate – 1 pair

▪ Month 3: – the first pair give
birth to two babies – 2 pairs

▪ Month 4: the first pair give birth
to 2 babies, the pair born in
month 3 are now mature – 3

▪ Month 5: the 3 pairs from
month 4, and 2 new pairs – 5

John Edgar 5

 After 5 months there are 5
pairs of rabbits
▪ i.e. the number of pairs at 4

months (3) plus the number of
pairs at 3 months (2)

▪ Why?
 While there are 3 pairs of

bunnies in month 4 only 2 of
them are able to mate
▪ the ones alive in the previous

month
 This series of numbers is

called the Fibonacci series

John Edgar 6

month:

pairs:

1 2 3 4 5 6

1 1 2 3 5 8

 The nth number in the Fibonacci series, fib(n), is:

▪ 0 if n = 0, and 1 if n = 1

▪ fib(n – 1) + fib(n – 2) for any n > 1

 e.g. what is fib(23)

▪ Easy if we only knew fib(22) and fib(21)
▪ Then the answer is fib(22) + fib(21)

▪ What happens if we actually write a function to
calculate Fibonacci numbers like this?

John Edgar 7

 Let's write a function just like the formula

▪ fib(n) = 0 if n = 0, 1 if n = 1,

▪ otherwise fib(n) = fib(n – 1) + fib(n – 2)

John Edgar 9

int fib(int n){
if(n == 0 || n == 1){

return n;
}else{

return fib(n-1) + fib(n-2);
}

}

The function
calls itself

 The Fibonacci function is recursive

▪ A recursive function calls itself

▪ Each call to a recursive method results in a separate call to
the method, with its own input

 Recursive functions are just like other functions

▪ The invocation is pushed onto the call stack

▪ And removed from the call stack when the end of a method
or a return statement is reached

▪ Execution returns to the previous method call

John Edgar 10

int fib(int n)
if(n == 0 || n == 1)

return n
else

return fib(n-1) + fib(n-2)

John Edgar 11

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(1) fib(0)fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(1)

1

1 1 1

1

0 0

0

1

12 1

3 2

5

In the next section of the course we will explain that this is a
hideously inefficient way of computing the series …

 When a function is called its data is pushed onto the
call stack, and execution switches to the function

 When a recursive function call is made, execution
switches to the current invocation of that function

▪ The call stack records the line number of the previous
function where the call was made from
▪ Which will be the previous invocation of the same function

▪ Once the function call ends it also returns to the previous
invocation

John Edgar 12

 Recursive functions do not use loops to repeat
instructions

▪ But use recursive calls, in if statements

 Recursive functions consist of two or more cases,
there must be at least one

▪ Base case, and one

▪ Recursive case

John Edgar 13

 The base case is a smaller problem with a
simpler solution

▪ This problem’s solution must not be recursive

▪ Otherwise the function may never terminate

 There can be more than one base case

▪ And base cases may be implicit

John Edgar 14

 The recursive case is the same problem with
smaller input

▪ The recursive case must include a recursive
function call

▪ There can be more than one recursive case

John Edgar 15

 Define the problem in terms of a smaller
problem of the same type

▪ The recursive part

▪ e.g. return fib(n-1) + fib(n-2);

 And the base case where the solution can be
easily calculated

▪ This solution should not be recursive

▪ e.g. if (n == 0 || n == 1) return n;

John Edgar 16

 How can the problem be defined in terms of
smaller problems of the same type?

▪ By how much does each recursive call reduce the
problem size?

▪ By 1, by half, …?

 What is the base case that can be solved
without recursion?

▪ Will the base case be reached as the problem size
is reduced?

John Edgar 17

Linear Search
Binary Search

John Edgar 19

int linSearch(int arr[], int n, int x){
for (int i=0; i < n; i++){

if(x == arr[i]){
return i;

}
} //for
return -1; //target not found

} The algorithm searches an array one
element at a time using a for loop

 Base cases

▪ Target is found, or the end of the array is reached

 Recursive case

▪ Target not found

John Edgar 20

int recLinearSearch(int arr[], int next, int n, int x){
if (next >= n){

return -1;
} else if (x == arr[next]){

return next;
} else {

return recLinearSearch(arr, next+1, n, x);
}

}

 Requires that the array is sorted

▪ In either ascending or descending order

▪ Make sure you know which!

 A divide and conquer algorithm

▪ Each iteration divides the problem space in half

▪ Ends when the target is found or the problem space
consists of one element

John Edgar 21

John Edgar 22

The array is sorted, and contains 16 items indexed from 0 to 15

Guess that the target item is in the middle, that is index = 15 / 2 = 7

value 07 11 15 21 29 32 44 45 57 61 64 73 79 81 86 92

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search for 32

John Edgar 23

45 is greater than 32 so the target must be in the lower half of the array

value 07 11 15 21 29 32 44 45 57 61 64 73 79 81 86 92

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search for 32

Repeat the search, guessing the mid point of the lower sub-array (6 / 2 = 3)

Everything in the upper half of the array can be ignored, halving the search space

John Edgar 24

21 is less than 32 so the target must be in the upper half of the subarray

value 07 11 15 21 29 32 44 45 57 61 64 73 79 81 86 92

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search for 32

Repeat the search, guessing the mid point of the new search space, 5

The mid point = (lower subarray index + upper index) / 2

The target is found so the search can terminate

 Each sub-problem searches a sub-array

▪ Differs only in the upper and lower array indices
that define the sub-array

▪ Each sub-problem is smaller than the last one

▪ In the case of binary search, half the size

 There are two base cases

▪ When the target item is found and

▪ When the problem space consists of one item

▪ Make sure that this last item is checked

John Edgar 25

John Edgar 26

int binarySearch(
int arr[], int start, int end, int x){

int mid = (start + end) / 2;
if (start > end){

return - 1; //base case
} else if(arr[mid] == x){

return mid; //second base case
} else if(arr[mid] < x){

return binarySearch(arr, mid + 1, end, x);
} else { //arr[mid] > target

return binarySearch(arr, start, mid - 1, x);
}

}

 Some recursive algorithms are inherently
inefficient

▪ e.g. the recursive Fibonacci algorithm which
repeats the same calculation again and again

▪ Look at the number of times fib(2) is called

 Such algorithms should be implemented
iteratively
▪ Even if the solution was determined using recursion

John Edgar 28

 Recursive algorithms have more overhead
than similar iterative algorithms

▪ Because of the repeated function calls

▪ Each function call has to be inserted on the stack

 It is often useful to derive a solution using
recursion and implement it iteratively

▪ Sometimes this can be quite challenging!

John Edgar 29

 Some recursive functions result in the call
stack becoming full

▪ Which usually results in an error and the
termination of the program

 This happens when function calls are
repeatedly pushed onto the stack

▪ And not removed from the stack until the process
is complete

John Edgar 30

 This function works

▪ But try running it to sum the numbers from 1 to 8,ooo

▪ It will probably result in a stack overflow
▪ Since 8,000 function calls have to be pushed onto the stack!

John Edgar 31

int sum(int x){
if (x == 0 || x == 1){

return x;
} else {

return x + sum(x – 1);
}

}

 This function won't result in a stack overflow

▪ Why not?
▪ Hint – think how fast factorials increase

John Edgar 32

int factorial (int x){
if (x == 0 || x == 1){

return 1;
} else {

return x * factorial(x – 1);
}

}

 What happens when we run factorial(5)?

▪ Each function call returns a value to a calculation in a previous call

 Like this

▪ factorial(5)

▪ factorial(4)
▪ fact(3)

 factorial(2)

 factorial(1)

 1 returned to factorial(2)

 2 returned to factorial(3)

▪ 6 returned to factorial(4)

▪ 24 returned to factorial(5)

▪ 120 returned from factorial(5)

 The final answer is only computed in the final return statement

John Edgar 33

int factorial (int x){
if (x == 0 || x == 1){

return 1;
} else {

return x * factorial(x – 1);
}

}

A calculation is performed after
returning to previous calls

 Another recursive factorial function

▪ The recursive call is the last statement in the algorithm and

▪ The final result of the recursive call is the final result of the function

▪ The function has a second parameter that contains the result

John Edgar 34

int factorialTail (int x, int result){
if (x <= 1){

return result;
} else {

return factorialTail(x-1, result * x);
}

}

 Here is the trace of factorialTail(5, 1)

▪ factorialTail(5, 1)

▪ factorialTail(4, 5)

▪ factorialTail(3, 20)

 factorialTail(2, 60)

 factorialTail(1, 120)

 120 returned to factorialTail(2)

 120 returned to factorialTail(3)

▪ 120 returned to factorialTail(4)

▪ 120 returned to factorialTail(5)

▪ 120 returned from factorialTail(5)

 The final answer is returned through each of the recursive
calls, and is calculated at the bottom of the recursion tree

John Edgar 35

int factorialTail (int x, int result){
if (x <= 1){

return result;
} else {

return factorialTail(x-1, result * x);
}

}

The calculation is performed
before making the recursive call

Nothing is achieved while
returning through the call stack

int factorialTail (int x, int result){
if (x <= 1){

return result;
} else {

return factorialTail(x-1, result * x);
}

}

 Tail recursive functions can be easily converted
into iterative versions
▪ This is done automatically by some compilers

John Edgar 36

int factorialIter (int x){
int result = 1;
while (x > 1){

result = result * x;
x = x-1;

}
return result;

}

// Calling Function
int factorial (int x){

return factorialTail(x, 1);
}

 It is useful to trace through the sequence of
recursive calls

▪ This can be done using a recursion tree

 Recursion trees can be used to determine the
running time of algorithms

▪ Annotate the tree to indicate how much work is
performed at each level of the tree

▪ And then determine how many levels of the tree there
are

John Edgar 37

 Mathematical induction is a method for performing

mathematical proofs

 An inductive proof consists of two steps

▪ A base case that proves the formula hold for some small

value (usually 1 or 0)

▪ An inductive step that proves if the formula holds for some

value n, it also holds for n+1

 The inductive step starts with an inductive hypothesis

▪ An assumption that the formula holds for n

John Edgar 39

 Recursion is similar to induction
 Recursion solves a problem by

▪ Specifying a solution for the base case and

▪ Using a recursive case to derive solutions of any
size from solutions to smaller problems

 Induction proves a property by

▪ Proving it is true for a base case and

▪ Proving that it is true for some number, n, if it is
true for all numbers less than n

John Edgar 40

 Prove, using induction, that the algorithm returns
the values

▪ factorial(0) = 0! = 1

▪ factorial(n) = n! = n * (n – 1) * … * 1 if n > 0

John Edgar 41

int factorial (int x){
if (x == 0){

return 1;
} else {

return x * factorial(x – 1);
}

}

 Base case: Show that the property is true for n = 0,
i.e. that factorial(0) returns 1

▪ This is true by definition as factorial(0) is the base case of
the algorithm and returns 1

 Establish that the property is true for an arbitrary k
implies that it is also true for k + 1

 Inductive hypothesis: Assume that the property is
true for n = k, that is assume that

▪ factorial(k) = k * (k – 1) * (k – 2) * … * 2 * 1

John Edgar 42

 Inductive conclusion: Show that the property is
true for n = k + 1, i.e., that factorial(k + 1) returns

▪ (k + 1) * k * (k – 1) * (k – 2) * … * 2 * 1

 By definition of the function: factorial(k + 1) returns

▪ (k + 1) * factorial(k) – the recursive case

 And by the inductive hypothesis: factorial(k) returns

▪ k * (k – 1) * (k – 2) * … * 2 * 1

 Therefore factorial(k + 1) must return

▪ (k + 1) * k * (k – 1) * (k – 2) * … * 2 * 1

 Which completes the inductive proof

John Edgar 43

 Towers of Hanoi
 Eight Queens problem
 Sorting

▪ Mergesort

▪ Quicksort

John Edgar 45

 Linked Lists are recursive data structures

▪ They are defined in terms of themselves

 There are recursive solutions to many list
methods

▪ List traversal can be performed recursively

▪ Recursion allows elegant solutions of problems
that are hard to implement iteratively

▪ Such as printing a list backwards

John Edgar 46

