
Recursion



 Identify recursive algorithms
 Write simple recursive algorithms
 Understand recursive function calling

▪ With reference to the call stack

 Compute the result of simple recursive 
algorithms

 Understand the drawbacks of recursion
 Analyze the running times of recursive functions

▪ Covered in the O Notation section
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A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can 
be produced from that pair in a year if it is supposed that every month each pair begets a new pair which from 
the second month on becomes productive?

Liber Abaci, Leonardo Pisano Bigollo (aka Fibonacci), 1202



 What happens if you put a 
pair of rabbits in a field?
▪ More rabbits!

 Assumptions
▪ Rabbits take one month to 

reach maturity and

▪ Each pair of rabbits 
produces another pair of 
rabbits one month after 
mating

▪ Rabbits never die

▪ Bunny heaven!
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 How many pairs of rabbits 
are there after 5 months?
▪ Month 1: start – 1 pair

▪ Month 2: the rabbits are now 
mature and mate – 1 pair

▪ Month 3: – the first pair give 
birth to two babies – 2 pairs

▪ Month 4: the first pair give birth 
to 2 babies, the pair born in 
month 3 are now mature – 3

▪ Month 5: the 3 pairs from 
month 4, and 2 new pairs – 5
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 After 5 months there are 5 
pairs of rabbits
▪ i.e. the number of pairs at 4 

months (3) plus the number of 
pairs at 3 months (2)

▪ Why?
 While there are 3 pairs of 

bunnies in month 4 only 2 of 
them are able to mate
▪ the ones alive in the previous 

month
 This series of numbers is 

called the Fibonacci series
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month:

pairs:

1 2 3 4 5 6

1 1 2 3 5 8



 The nth number in the Fibonacci series, fib(n), is:

▪ 0 if n = 0, and 1 if n = 1

▪ fib(n – 1) + fib(n – 2)  for any n > 1

 e.g. what is fib(23)

▪ Easy if we only knew fib(22) and fib(21)
▪ Then the answer is fib(22) + fib(21)

▪ What happens if we actually write a function to
calculate Fibonacci numbers like this?
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 Let's write a function just like the formula

▪ fib(n) = 0 if n = 0, 1 if n = 1, 

▪ otherwise fib(n) = fib(n – 1) + fib(n – 2)
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int fib(int n){
if(n == 0 || n == 1){

return n;
}else{

return fib(n-1) + fib(n-2); 
}

}

The function 
calls itself



 The Fibonacci function is recursive

▪ A recursive function calls itself

▪ Each call to a recursive method results in a separate call to 
the method, with its own input

 Recursive functions are just like other functions

▪ The invocation is pushed onto the call stack

▪ And removed from the call stack when the end of a method 
or a return statement is reached 

▪ Execution returns to the previous method call
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int fib(int n)
if(n == 0 || n == 1)

return n
else

return fib(n-1) + fib(n-2)
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fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(1) fib(0)fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(1)

1

1 1 1

1

0 0

0

1

12 1

3 2

5

In the next section of the course we will explain that this is a 
hideously inefficient way of computing the series …



 When a function is called its data is pushed onto the 
call stack, and execution switches to the function

 When a recursive function call is made, execution 
switches to the current invocation of that function

▪ The call stack records the line number of the previous 
function where the call was made from
▪ Which will be the previous invocation of the same function

▪ Once the function call ends it also returns to the previous 
invocation
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 Recursive functions do not use loops to repeat 
instructions

▪ But use recursive calls, in if statements

 Recursive functions consist of two or more cases, 
there must be at least one

▪ Base case, and one

▪ Recursive case
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 The base case is a smaller problem with a 
simpler solution

▪ This problem’s solution must not be recursive

▪ Otherwise the function may never terminate

 There can be more than one base case

▪ And base cases may be implicit
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 The recursive case is the same problem with 
smaller input

▪ The recursive case must include a recursive 
function call

▪ There can be more than one recursive case
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 Define the problem in terms of a smaller 
problem of the same type

▪ The recursive part

▪ e.g. return fib(n-1) + fib(n-2);

 And the base case where the solution can be 
easily calculated

▪ This solution should not be recursive

▪ e.g. if (n == 0 || n == 1) return n;
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 How can the problem be defined in terms of 
smaller problems of the same type?

▪ By how much does each recursive call reduce the 
problem size?

▪ By 1, by half, …?

 What is the base case that can be solved 
without recursion?

▪ Will the base case be reached as the problem size 
is reduced?
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Linear Search
Binary Search
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int linSearch(int arr[], int n, int x){
for (int i=0; i < n; i++){

if(x == arr[i]){
return i; 

} 
} //for
return -1; //target not found

} The algorithm searches an array one
element at a time using a for loop



 Base cases

▪ Target is found, or the end of the array is reached

 Recursive case

▪ Target not found 
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int recLinearSearch(int arr[], int next, int n, int x){
if (next >= n){

return -1;
} else if (x == arr[next]){

return next; 
} else {

return recLinearSearch(arr, next+1, n, x);
}

}



 Requires that the array is sorted

▪ In either ascending or descending order

▪ Make sure you know which!

 A divide and conquer algorithm

▪ Each iteration divides the problem space in half

▪ Ends when the target is found or the problem space 
consists of one element
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The array is sorted, and contains 16 items indexed from 0 to 15

Guess that the target item is in the middle, that is index = 15 / 2 = 7

value 07 11 15 21 29 32 44 45 57 61 64 73 79 81 86 92

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search for 32
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45 is greater than 32 so the target must be in the lower half of the array

value 07 11 15 21 29 32 44 45 57 61 64 73 79 81 86 92

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search for 32

Repeat the search, guessing the mid point of the lower sub-array (6 / 2 = 3)

Everything in the upper half of the array can be ignored, halving the search space
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21 is less than 32 so the target must be in the upper half of the subarray

value 07 11 15 21 29 32 44 45 57 61 64 73 79 81 86 92

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search for 32

Repeat the search, guessing the mid point of the new search space, 5

The mid point = (lower subarray index + upper index) / 2

The target is found so the search can terminate



 Each sub-problem searches a sub-array

▪ Differs only in the upper and lower array indices 
that define the sub-array

▪ Each sub-problem is smaller than the last one

▪ In the case of binary search, half the size

 There are two base cases

▪ When the target item is found and

▪ When the problem space consists of one item

▪ Make sure that this last item is checked
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int binarySearch(
int arr[], int start, int end, int x){

int mid = (start + end) / 2;
if (start > end){

return - 1; //base case
} else if(arr[mid] == x){

return mid; //second base case
} else if(arr[mid] < x){

return binarySearch(arr, mid + 1, end, x);
} else { //arr[mid] > target

return binarySearch(arr, start, mid - 1, x);
}

}





 Some recursive algorithms are inherently 
inefficient

▪ e.g. the recursive Fibonacci algorithm which 
repeats the same calculation again and again

▪ Look at the number of times fib(2) is called

 Such algorithms should be implemented
iteratively
▪ Even if the solution was determined using recursion
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 Recursive algorithms have more overhead 
than similar iterative algorithms

▪ Because of the repeated function calls

▪ Each function call has to be inserted on the stack

 It is often useful to derive a solution using 
recursion and implement it iteratively

▪ Sometimes this can be quite challenging!
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 Some recursive functions result in the call 
stack becoming full

▪ Which usually results in an error and the 
termination of the program

 This happens when function calls are 
repeatedly pushed onto the stack

▪ And not removed from the stack until the process 
is complete
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 This function works

▪ But try running it to sum the numbers from 1 to 8,ooo

▪ It will probably result in a stack overflow
▪ Since 8,000 function calls have to be pushed onto the stack!
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int sum(int x){
if (x == 0 || x == 1){

return x; 
} else {

return x + sum(x – 1);
}

}



 This function won't result in a stack overflow

▪ Why not?
▪ Hint – think how fast factorials increase
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int factorial (int x){
if (x == 0 || x == 1){

return 1; 
} else {

return x * factorial(x – 1);
}

}



 What happens when we run factorial(5)?

▪ Each function call returns a value to a calculation in a previous call

 Like this

▪ factorial(5)

▪ factorial(4)
▪ fact(3)

 factorial(2)

 factorial(1)

 1 returned to factorial(2)

 2 returned to factorial(3)

▪ 6 returned to factorial(4)

▪ 24 returned to factorial(5)

▪ 120 returned from factorial(5)

 The final answer is only computed in the final return statement
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int factorial (int x){
if (x == 0 || x == 1){

return 1; 
} else {

return x * factorial(x – 1);
}

}

A calculation is performed after
returning to previous calls



 Another recursive factorial function

▪ The recursive call is the last statement in the algorithm and

▪ The final result of the recursive call is the final result of the function

▪ The function has a second parameter that contains the result
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int factorialTail (int x, int result){
if (x <= 1){

return result; 
} else {

return factorialTail(x-1, result * x);
}

}



 Here is the trace of factorialTail(5, 1)

▪ factorialTail(5, 1)

▪ factorialTail(4, 5)

▪ factorialTail(3, 20)

 factorialTail(2, 60)

 factorialTail(1, 120)

 120 returned to factorialTail(2)

 120 returned to factorialTail(3)

▪ 120 returned to factorialTail(4)

▪ 120 returned to factorialTail(5)

▪ 120 returned from factorialTail(5)

 The final answer is returned through each of the recursive 
calls, and is calculated at the bottom of the recursion tree
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int factorialTail (int x, int result){
if (x <= 1){

return result; 
} else {

return factorialTail(x-1, result * x);
}

}

The calculation is performed
before making the recursive call

Nothing is achieved while
returning through the call stack



int factorialTail (int x, int result){
if (x <= 1){

return result; 
} else {

return factorialTail(x-1, result * x);
}

}

 Tail recursive functions can be easily converted 
into iterative versions
▪ This is done automatically by some compilers
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int factorialIter (int x){
int result = 1;
while (x > 1){

result = result * x;
x = x-1; 

}
return result;

}

// Calling Function
int factorial (int x){

return factorialTail(x, 1);
}



 It is useful to trace through the sequence of 
recursive calls

▪ This can be done using a recursion tree

 Recursion trees can be used to determine the 
running time of algorithms

▪ Annotate the tree to indicate how much work is 
performed at each level of the tree

▪ And then determine how many levels of the tree there 
are
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 Mathematical induction is a method for performing 

mathematical proofs

 An inductive proof consists of two steps

▪ A base case that proves the formula hold for some small 

value (usually 1 or 0)

▪ An inductive step that proves if the formula holds for some 

value n, it also holds for n+1

 The inductive step starts with an inductive hypothesis

▪ An assumption that the formula holds for n
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 Recursion is similar to induction
 Recursion solves a problem by

▪ Specifying a solution for the base case and

▪ Using a recursive case to derive solutions of any 
size from solutions to smaller problems

 Induction proves a property by

▪ Proving it is true for a base case and

▪ Proving that it is true for some number, n, if it is 
true for all numbers less than n
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 Prove, using induction, that the algorithm returns 
the values

▪ factorial(0) = 0! = 1

▪ factorial(n) = n! = n * (n – 1) * … * 1 if n > 0
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int factorial (int x){
if (x == 0){

return 1; 
} else {

return x * factorial(x – 1);
}

}



 Base case: Show that the property is true for n = 0, 
i.e. that factorial(0) returns 1

▪ This is true by definition as factorial(0) is the base case of 
the algorithm and returns 1

 Establish that the property is true for an arbitrary k
implies that it is also true for k + 1

 Inductive hypothesis: Assume that the property is 
true for n = k, that is assume that

▪ factorial(k) = k * (k – 1) * (k – 2) * … * 2 * 1
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 Inductive conclusion: Show that the property is 
true for n = k + 1, i.e., that factorial(k + 1) returns

▪ (k + 1) * k * (k – 1) * (k – 2) * … * 2 * 1

 By definition of the function: factorial(k + 1) returns

▪ (k + 1) * factorial(k) – the recursive case

 And by the inductive hypothesis: factorial(k) returns

▪ k * (k – 1) * (k – 2) * … * 2 * 1

 Therefore factorial(k + 1) must return

▪ (k + 1) * k * (k – 1) * (k – 2) * … * 2 * 1

 Which completes the inductive proof

John Edgar 43





 Towers of Hanoi
 Eight Queens problem 
 Sorting

▪ Mergesort

▪ Quicksort
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 Linked Lists are recursive data structures

▪ They are defined in terms of themselves

 There are recursive solutions to many list 
methods

▪ List traversal can be performed recursively

▪ Recursion allows elegant solutions of problems 
that are hard to implement iteratively

▪ Such as printing a list backwards
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