Arrays and Linked Lists

Stacks and Queues

Outline

Abstract Data Types
Stacks
Queues

Priority Queues and Deques

John Edgar

Postfix

And Stacks

Reverse Polish Notation

Reverse Polish Notation (RPN)

Also known as postfix notation
A mathematical notation

Where every operator follows its operands

Invented by Jan tukasiewicz in 1920
Example

Infix: g+ ((1+2)%4)-3
RPN:g12+4*+3—

John Edgar 4

RPN Example

To evaluate a postfix expression read it from left to right

store g store 1 store 2

Apply + to the last two operands

John Edgar 5

RPN Example

To evaluate a postfix expression read it from left to right

store 5 store 1 store 2
Apply + to the last two operands
store 3 store 4

Apply * to the last two operands

John Edgar 6

RPN Example

To evaluate a postfix expression read it from left to right

store 5 store 1 store 2
Apply + to the last two operands
store 3 store 4

Apply * to the last two operands
store 12

Apply + to the last two operands

John Edgar 7

RPN Example

To evaluate a postfix expression read it from left to right

store 5 store 1 store 2
Apply + to the last two operands
store 3 store 4

Apply * to the last two operands
store 12

Apply + to the last two operands
store 17 store 3

Apply - to the last two operands

John Edgar 8

RPN Example

To evaluate a postfix expression read it from left to right

store 5 store 1 store 2
Apply + to the last two operands
store 3 store 4

Apply * to the last two operands

store 14

store 12

Apply + to the last two operands 14

store 17 store 3

retrieve answer

Apply - to the last two operands

John Edgar 9

Calculating a Postfix Expression

for each input symbol
if symbol is operand

store(operand)

if symbol is operator
LHS = removel()
RHS =remove()
result = LHS operator RHS
store(result)

result = remove()

John Edgar

Describing a Data Structure

What are the storage properties of the data
structure that was used?

Specifically how are items stored and removed?
Note that items are never inserted between
existing items

The last item to be entered is the first item to be
removed

Known as LIFO (Last In First Out)
This data structure is referred to as a stack

John Edgar

John Edgar 12

A stack only allows items to be inserted and
removed at one end
We call this end the top of the stack

The other end is called the bottom
Access to other items in the stack
is not allowed

John Edgar

Postfix and Stacks

A stack is a natural choice to store data for
postfix notation
Operands are stored at the top of the stack

And removed from the top of the stack
Notice that we have not (yet) discussed how

a stack should be implemented

Just what it does
An example of an Abstract Data Type

John Edgar 14

Abstract Data Types

Abstract Data Types

A collection of data

Describes data is stored but itis
stored
Set of operations on the data

Describes precisely effect the operations
nave on the data but

Does specify operations are carried out
An ADT is not an actual (concrete) structure

John Edgar

Concrete Data Type

The term concrete data type is usually used in
contrast with an ADT

An ADT is a collection of data and a set of
operations on the data

A concrete data type is an implementation of
an ADT using a data structure

A construct that is defined in a programming
language to store a collection of data
Such as an array

John Edgar

ADT Operators

Mutators
Accessors
Constructors
Other

John Edgar 18

ADT Operators

Mutators
Often known as setters

Operations that change the contents of an ADT, usually
subdivided into

Adding data to a data collection and
Removing data from a collection

Different ADTs allow data to be added and removed at
different locations

Accessors

Constructors
Other

John Edgar 19

ADT Operators

Mutators

Accessors

Often known as getters

Retrieve data from the collection
e.g. the item at the top of the stack

Ask questions about the data collection
Is it full?
How many items are stored?

Constructors
Other

John Edgar

20

ADT Operators

Mutators
Accessors
Constructors

Constructors are used to create an ADT

Either empty
Or initialized with data

Other

John Edgar 21

Implementation Hiding

Information related to how storage is
implemented should be hidden

An ADT's operations can be used in the
design of other modules or applications

Other modules do not need to know the
implementation of the ADT operations

Which allows implementation of operations to be
changed without affecting other modules

John Edgar

Specification of ADT Operations

Operations should be specified in detail without
discussing implementation issues

In C++ a class to implement an ADT is divided into
header (.h) and implementation (.cpp) files

The header file contains the class definition
which only includes method prototypes

Occasionally there are exceptions to this
The implementation file contains the definitions

of the methods

John Edgar 23

The Call Stack

Another Stack Example

Functions

Programs typically involve more than one
function call and contain
A main function

Which calls other functions as required
Each function requires space in main memory
forits variables and parameters

This space must be allocated and de-allocated in
some organized way

John Edgar 25

Organizing Function Calls

Most programming languages use a call stack to
implement function calling

When a method is called, its line number and other data are
pushed onto the call stack

When a method terminates, it is popped from the call stack

Execution restarts at the indicated line number in the method
currently at the top of the stack

Stack memory is allocated and de-allocated without
explicit instructions from a programmer

And is therefore referred to as automatic storage

John Edgar 26

The Call Stack

The call stack — from the Visual Studio Debug window

Mame

| empt225a3rb.exelRedBlackTree<int=removeFix(Mode<int> * target, Mode<int> * dad, bool isLeft) Line 289
crpt225a3rb.exe!RedBlackTree<int>removeMode(Mode<int> * target) Line 271
crnpt225a3rb.exelRedBlackTree<int>tremove(int ¥} Line 206
crnpt225a3rb.exelpartlcopy() Line 185
cmpt?25a3rb.exelpartl(} Line 56
cmpt225a3rb.exelmain{) Line 39

Bottom of the stack: least Top of the stack: most

recently called method recently called method.

John Edgar 27

Stack Frames

Information stored on the call stack about a
function is itself stored in a stack frame

Sometimes referred to as an activation record
Stack frames store

T
T
S

John Edgar

ne arguments passed to the function
ne return address back to the calling function

hace for the function’s local variables

28

Call Stack and Memory

When a function is called space is allocated
for it on the call stack

This space is allocated sequentially
Once a function has run the space it used on

the call stack is de-allocated

Allowing it to be re-used
Execution returns to the previous function

Which is now at the top of the call stack

John Edgar 29

Call Stack and Functions

int main(){ double sumArray(double a[], int n){
int n = 2; double sum = 0;
double arr[] = {5,17}; for(int i=0; i < n; i++){ X 5
squareArray(arr, n); sum += a[i];
. exp 2
int sum = sumArray(arr, n); }
cout << sum << endl; return sum; result 1
return 0; } .
} | 1
void squareArray(int a[], n){
for(int i=0; i < n; i++){ a affo2bsc
int x = a[i]; n 2
a[i] = power(x, 2);
} | (0]
} X c
double power(double x, int exp){
double result = 1; n)
for(int i=1; i <= exp; i++){
result *= x; arr 517
}
return result; ol)
¥ call stack
John Edgar 30

Call Stack and Functions

int main(){ double sumArray(double a[], int n){
int n = 2; double sum = 0;
double arr[] = {5,17}; for(int i=0; i < n; i++){
squareArray(arr, n); sum += a[i];
int sum = sumArray(arr, n); }
cout << sum << endl; return sum;
return 0; }

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){
result *= x;

}

return result;
}
John Edgar

X 5

exp 2

result 25

' 3

a affo2bsc

n 2

i 0

X 5

n 2

arr 2517

sum -
call stack

31

Call Stack and Functions

int main(){ double sumArray(double a[], int n){
int n = 2; double sum = 0;
double arr[] = {5,17}; for(int i=0; i < n; i++){
squareArray(arr, n); sum += a[i];
int sum = sumArray(arr, n); }
cout << sum << endl; return sum;
return 0; }

void squareArray(int a[], n){
for(int i=0; i < n; i++){
int x = a[i]; n 5
a[i] = power(x, 2);
} [1

X 17

a affo2bsc

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){
result *= x; arr 2517

n 2

}

return result; sum

call stack

John Edgar 32

Call Stack and Functions

int main(){ double sumArray(double a[], int n){
int n = 2; double sum = 0;
double arr[] = {5,17}; for(int i=0; i < n; i++){
squareArray(arr, n); sum += a[i];
int sum = sumArray(arr, n); }
cout << sum << endl; return sum;
return 0; }

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){
result *= x;

}

return result;
}
John Edgar

X 17
exp 2
result 289
' 3
a affoz2bsc
n 2
i 2
X 17
n 2
arr 2517
sum -

call stack

33

Call Stack and Functions

int main(){ double sumArray(double a[], int n){
int n = 2; double sum = 0;
double arr[] = {5,17}; for(int i=0; i < n; i++){
squareArray(arr, n); sum += a[i];
int sum = sumArray(arr, n); }
cout << sum << endl; return sum;
return 0; }
}
void squareArray(int a[], n){
for(int i=0; i < n; i++){ c affo2bsc
int x = a[i]; n >
a[i] = power(x, 2);
} sum 314
} | 2
double power(double x, int exp){
double result = 1;
q q q q n 2
for(int i=1; i <= exp; i++){
result *= x; arr 25289
}
return result; sum 314
) call stack

John Edgar 34

Returning Values

In the example, functions returned values
assigned to variables in other functions

They did not affect the amount of memory
required by previously called functions

That is, functions below them on the call stack
Stack memory is sequentially allocated

It is not possible to increase memory assigned to a
function previously pushed onto the stack

John Edgar 35

Implementing a Stack

With an Array

Stack Operations

A stack should implement at least the first two
of these operations

push —insert an item at the top of the stack

pop —remove and return the top item

peek — return the top item
ADT operations should be performed efficiently

The definition of efficiency varies from ADT to ADT

The order of the items in a stack is based solely on the
order in which they arrive

John Edgar 37

A Design Note

Assume that we plan on using a stack that
will store integers and have these methods
void push(int)
int pop()
We can design other modules that use these
methods

Without having to know anything about how they,
or the stack itself, are implemented

John Edgar 38

We will use classes to encapsulate stacks

Encapsulate —enclose in
A class is a programming construct that
contains

Data for the class, and

Operations of the class

More about classes later ...

John Edgar 39

Implementing a Stack

The stack ADT can be implemented using a
variety of data structures, e.g.
Arrays

Linked Lists
Both implementations must implement all the
stack operations

In constant time

Time that is independent of the number of items in the stack

John Edgar 40

Array Implementation

Use an array to implement a stack
We need to keep track of the index that
represents the top of the stack

When we insert an item increment this index

When we delete an item decrement this index
Insertion or deletion time is independent of
the number of items in the stack

John Edgar 41

Array Stack Example

Stack st();
6 1 7 st.push(6); //top
st.push(1l); //top
st.push(7); //top
st.push(8); //top
st.push(13); //top = 4
st.pop(); //top
st.pop(); //top

w NBRER OO

2

John Edgar 42

Array Implementation Summary

Easy to implement a stack with an array

And push and pop can be performed in constant
time

Once the array is full
No new values can be inserted or

A new, larger, array has to be created
And the existing items copied to this new array
Known as a dynamic array

John Edgar 43

Array Review

Arrays contain identically typed values

These values are stored sequentially in main memory
Values are stored at specific numbered positions
in the array called indexes

The first value is stored at index o, the second at index
1, the jith at index /-1, and so on

The last item is stored at position n-1, assuming that
the array is of size n

Referred to as zero-based indexing

John Edgar 45

Array Indexing

int arr[] = {3,7,6,8,1,7,2};
Creates an integer array with 7 elements
To access an element refer to the array

: O
name and the index of that element :
int x = arr[3]; assignsthe value of the 1 /
fourth array element (8) to x 5 5
arr[5] = 11; changesthe sixth
element of the array from 7to 11 3 8
arr[7] = 3; resultsinanerror 4 1
because the index is out of bounds
In C++ the error is an unexpected run-time or logic error 5 11
6 2

An IDE may raise a debug error after termination

John Edgar 46

Arrays and Main Memory

int grade[4];
grade[2] = 23;

23

John Edgar

Declares an array variable of size 4

Assigns 23 to the third element of grade

The array is shown as not storing any
values —although this isn’t really the case

grade is a constant pointer to the array
and stores the address of the array

But how does the program know where
grade[2] is?

47

Memory Addresses

Access to array elements is very fast
An array variable refers to the array

Storing the main memory address of the first element

The address is stored as number, with each address
referring to one byte of memory

Address o would be the first byte

Address 1 would be the second byte

Address 20786 would be the twenty thousand, seven hundred
and eighty seventh byte

John Edgar 48

Offset Calculations

Considergrade[2] = 23;
How do we find this element in the array?
Consider what we know
The address of the first array element
The type of the values stored in the array

And therefore the size of each of the array elements

The index of the element to be accessed
We can therefore calculate the address of the element

to be accessed, which equals
address of first element + (index * type size)

John Edgar 49

Offset Example

1280 1290 The integer stored at
1281 1291 grade[2] is located
at byte:
1282 1292
grade >
1283 1293 1282 +2 * 4 =
1284 1294 1290
1285 1295
Stores a pointer to th.e 1986 1296
start of the array, in this
case byte 1282 1287 1297
1288 1298
1289 1299

John Edgar 50

Passing Arrays to Functions

Array variables are pointers

An array variable argument to a function passes
the address of the array

And not a copy of the array
Changes made to the array by a function are

made to the original (one-and-only) array

If this is not desired, a copy of the array should be
made within the function

John Edgar

Array Positions

What if array positions carry meaning?

An array that is sorted by name, or grade or some
other value

Or an array where the position corresponds to a
position of some entity in the world

The ordering should be maintained when
elements are inserted or removed

John Edgar 52

Ordered Array Problems

When an item is inserted either
Write over the element at the given index or

Move the element, and all elements after it, up one
position
When an item is removed either

Leave gaps in the array, i.e. array elements that don't
represent values or

Move all the values after the removed value down one
index

John Edgar 53

Arrays are Static

The size of an array must be specified when it
is created

And cannot then be changed
If the array is full, values cannot be inserted
There are, time consuming, ways around this

To avoid this problem we can make arrays much
larger than they are needed

However this wastes space

John Edgar (YA

Array Summary

things about arrays

Fast, random access, of elements using a simple offset
calculation

Very storage space efficient, as little main memory is
required other than the data itself

Easy to use
Bad things about arrays
Slow deletion and insertion for ordered arrays

Size must be known when the array is created

Or possibly beforehand
An array is either full or contains unused elements

John Edgar 55

Arrays in C++

Another Review

Declaring (Static) Arrays

Arrays are declared just like single variables
except that the name is followed by [1s
The []s should contain the size of the array
which must be a constant or literal integer
int age[100];
const int DAYS = 365;
double temperatures[DAYS];

John Edgar 57

Initializing Arrays

Arrays can be initialized
One element at a time
By using a for loop

Or by assigning the array values on the same line
as the declaration

int fib[] = {eo,1,1,2,3,5,8,13};

Note that the size does not have to be specified
since it can be derived

John Edgar 58

Array Assignments

A new array cannot be assigned to an existing array
int arrl[4];
int arr2[4];

arrl = arr2; //can't do this!

arrl = {1,3,5,7}; //.. or this ..

Array elements can be assigned values

for(int i=0; 1 < 4; i++) {
arrl[i] = arr2[i];

}

John Edgar 59

Array Parameters

An array parameter looks just like an array
variable

Except that the size is not specified
C++ arrays do not have a size member

Or any members, since they are not classes

Therefore, it is common to pass functions the size
of array parameters

For example
int sum(int arr[], int n)

John Edgar 60

Array Arguments

Array variables are passed to functions in the
standard way

sum(grades, 4);

John Edgar 61

What's in an Array Variable

An array variable records the address of the
first element of the array

This address cannot be changed after the array
has been declared

It is therefore a constant pointer
This explains why existing array variables
cannot be assigned new arrays
And why arrays passed to functions may be
changed by those functions

John Edgar 62

Memory in C++

C++ gives programmers a lot of control over where
variables are located in memory
There are three classes of main memory

Static

Automatic

Dynamic
Automatic memory is generally used to allocate space
for variables declared inside functions

Unless those variables are specifically assigned to another
class of storage

John Edgar 63

Arrays and Memory in C++

Arrays are allocated space in automatic
storage
At least as they have been discussed so far, and

Assuming that they were declared in a function
Variables allocated space on the call stack are
not permitted to change size

As stack memory is allocated in sequence and this
could result other variables being over-written

John Edgar 64

Dynamic Memory

What happens if we want to determine how
much memory to allocate at run time?

Stack memory size is determined at compile time
so it would need to be allocated somewhere else

Let’s call somewhere else the heap or the free store
We still need automatic variables that refer or

point to the dynamically allocated memory
In C++ such variables are pointers

John Edgar 65

Variables in Dynamic Memory

Create a variable to store an address
A pointer to the type of data to be stored
Addresses have a fixed size

If there is initially no address it should be assigned a
special value (NULL)

Create new data in dynamic memory

This may be done when needed (i.e. at run time)
Assign the address of the data to the pointer
This involves more a more complex management
system than using automatic memory

John Edgar 66

Creating an Array in Dynamic

Memory

Arrays created in dynamic memory are
indexed just like other arrays
int* p _arr = new int[100];
for (int i=0; i < 100; ++i){
p_arr[i] = i+1;
}
Pointers to arrays can be assigned new arrays

delete[] p _arr; //release memory
p_arr = new int[1000000];

John Edgar 67

A Dynamic Array

int* seq = NULL;
double x = 2.397; int* sequence(int start, int n){
seq = sequence(s, 3); int* result = new int[n];
for(inti=o0; i< n;i++) {
result[i] = start + i;

}

return result;

2a34 is the main memory address of the array

2334 2.397

seq X

Builds array in dynamic
storage (heap, free store)

John Edgar 68

A Dynamic Array

int seq = NULL,;

double x = 2.397; int* sequence(int start, int n){
seq = sequence(3, 3); int* result = new int[n];
seq = sequence(4, 5); for(inti=o; i< n;i++) {

result[i] = start + i;

}

return result;

memory leak!

47b1 2.397
—_—T 1 2 3

seq X

John Edgar 69

Releasing Dynamic Memory

When a function call is complete its stack

memory is released and can be re-used

Dynamic memory should also be released
Failing to do so results in a memory leak

It is sometimes not easy to determine when

dynamic memory should be released

Data might be referred to by more than one pointer

Memory should only be released when itis no longer
referenced by any pointer

John Edgar 70

Dynamic vs Static

When should a data object be created in
dynamic memory?
When the object is required to change size, or

If it is not known if the object will be required
Languages have different approaches to
using static and dynamic memory

In C++ the programmer can choose whether to
assign data to static or dynamic memory

John Edgar

Linked Lists

A Dream Data Structure

It would be nice to have a data structure that is
Dynamic
Does fast insertions/deletions in the middle

We can achieve this using linked lists ...

John Edgar 73

A linked list is a dynamic data structure that consists
of nodes linked together
A node is a data structure that contains

data

the location of the next node
45

John Edgar 74

Node Pointers

A node contains the address of the next node
in the list

In C++ this is recorded as a pointer to a node
Nodes are created in dynamic memory

And their memory locations are not in sequence
The data attribute of a node varies depending
on what the node is intended to store

John Edgar 75

Linked Lists

A linked list is a chain of nodes where each node
stores the address of the next node

head 45 29 13 42 NULL

John Edgar 76

Linked Lists

class Node {
public:
int data;

* .
Node* next; Nodes point to other nodes, so

} the pointer must be of type Node o

John Edgar 77

Building a Linked List

Node* a = new Node(7, null); ﬁ%wnmsaconﬂmxioﬂntheNode
class

Node(int value, Node* nd){
data value;
next nd;

7 NULL

John Edgar 78

Building a Linked List

Node* a = new Node(7, null); Assumes a constructor in the Node
a->next = new Node(45, null); class

Node(int value, Node* nd){
data = value;
next = nd;

}
d
7 NULL
1 NULL
a->data '\ \
a->next->data a->next->next

John Edgar 79

Traversing a Linked List

Node* a = new Node(7, null); Assumes a constructor in the Node
a->next = new Node(45, null); class

* — 3¢
Node* p d, Node(int value, Node* nd){

data value;
next nd;

7 45 NULL

John Edgar 80

Traversing a Linked List

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;

p = p->next; // go to next node

NULL

John Edgar

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data value;
next nd;

81

Traversing a Linked List

Node* a = new Node(7, null); Assumes a constructor in the Node
a->next = new Node(45, null); class
Node* p = a;

p = p->next; // go to next node
p = p->next; // go to next node

D NULL

John Edgar

Node(int value, Node* nd){
data = value;
next = nd;

In practice insertion and traversal

NULL would be methods of a linked list class

82

Encapsulating Linked Lists

The previous example showed a list built out
of nodes

In practice a linked list is encapsulated in its
own class

Allowing new nodes to be easily inserted and
removed as desired

The linked list class has a pointer to the (node at
the) head of the list

Implementations of linked lists vary

John Edgar 83

Implementing a Stack

With a Linked List

Stack: Linked List

Nodes should be inserted and removed at the
head of the list

New nodes are pushed onto the front of the list,
so that they become the top of the stack

Nodes are popped from the front of the list
Straight-forward linked list implementation

Both push and pop affect the front of the list

There is therefore no need for either algorithm to
traverse the entire list

John Edgar 85

Linked List Implementation

void push(int x){
// Make a new node whose next pointer is the
// existing list

Node* newNode = new Node(x, top);

top = newNode; //head points to new node

¥

int pop(){

// Return the value at the head of the list
int temp = top->data;
Node* p —_ top; What happenS |fth€||st
top = top->next; to be popped is empty?
delete p; // deallocate old head
return temp;

John Edgar 86

List Stack Example

Stack st;
st.push(6);

top NULL

6 NULL

John Edgar 87

List Stack Example

Stack st;
st.push(6);
st.push(1);

top

6 NULL

John Edgar 88

List Stack Example

Stack st;

st.push(6);

st.push(1);

st.push(7);
top

6 NULL

John Edgar 89

List Stack Example

top

42

6 NULL

John Edgar

Stack st;

st.push(6);
st.push(1l);
st.push(7);
st.push(42);

90

List Stack Example

top

John Edgar

42

NULL

Stack st;

st
st
st
st
st

.push(6);
.push(1);
.push(7);
.push(42);
.pop();

List Stack Example

top

John Edgar

NULL

Stack st;

st
st
st
st
st

.push(6);
.push(1);
.push(7);
.push(42);
.pop();

Postfix Example

Visual Studio Presentation

Print Queues

Assume that we want to store data for a print
queue for a student printer

Student ID

Time

File name
The printer is to be assigned to file in the
order in which they are received

A fair algorithm

John Edgar 95

Classes for Print Queues

To maintain the print queue we would require
at least two classes

Request class

Collection class to store requests
The collection class should support the
desired behaviour

FIFO (First In First Out)

The ADT is a queue

John Edgar 96

In a queue items are inserted at the back and
removed from the front

As an aside queue is just the British (i.e. correct©)
word for a line (or line-up)

Quevues are FIFO (First In First Out) data
structures — fair data structures

John Edgar 97

What CanYou Use a Queue For?

Server requests

Instant messaging servers queue up incoming
messages

Database requests
Why might this be a bad idea for all such requests?

Print queues
Operating systems often use queues to schedule

CPU jobs
Various algorithm implementations

John Edgar 98

Queue Operations

A queue should implement at least the first two
of these operations:

insert —insert item at the back of the queue

remove —remove an item from the front

peek —return the item at the front of the queue
without removing it

Like stacks, itis assumed that these operations
will be implemented efficiently

That is, in constant time

John Edgar 99

Implementing a Queue

with an Array

Array Implementation

Consider using an array as the underlying
structure for a queue, we could

Make the back of the queue the current size of the
array, much like the stack implementation

Initially make the front of the queue index o

Inserting an item is easy
What happens when items are removed?

Either move all remaining items down — slow
Or increment the front index — wastes space

John Edgar 101

Circular Arrays

Neat trick: use a circular array to insert and remove
items from a queue in constant time

The idea of a circular array is that the end of the
array “wraps around” to the start of the array

John Edgar 102

The mod Operator

The mod operator (%) calculates remainders:

1%5 = 1, 2%5 = 2, 5%5 = O, 8%5 = 3
The mod operator can be used to calculate the front
and back positions in a circular array

Thereby avoiding comparisons to the array size

The back of the queue is:

(front + num) % queue.length
where num is the number of items in the queue

After removing an item the front of the queue is:

(front + 1) % queue.length;

John Edgar 103

Array Stack Example

Queue q();
.insert(6); //front

.insert(4); //front
.insert(3); //front = 0
.insert(13); //front = @
.insert(7); //front = ©
.remove(); //front =
.insert(11); //front
.remove(); //front =
.insert(42); //front

in 1
(O I AY)

42 3 13 7 11

O 0 O a9 0 a9 a9 9 QA
Il

nm N 1=

John Edgar 104

Implementing a Queue

With a Linked List

Linked List Implementation

Removing items from the front of the queue
is straightforward

ltems should be inserted at the back of the
queue in constant time

So we must avoid traversing through the list

Use a second node pointer to keep track of the
node at the back of the queue

Requires a little extra administration

John Edgar

List Queue Example

Queue (;
g.insert(6);

front NULL
6 NULL
back NULL

John Edgar 107

List Queue Example

front

17

back

John Edgar

NULL

NULL

Queue q;
g.insert(6);
g.insert(17);

108

List Queue Example

front
6
17
3
back

John Edgar

NULL

NULL

Queue q;

g.insert(6);
q.insert(17);
g.insert(3);

109

List Queue Example

front
6
17
3
2
back _

John Edgar

NULL

NULL

Queue q;

qg.

qg.
g.
g.

insert(6);
insert(17);
insert(3);
insert(42);

110

List Queue Example

front
6
17
3
2
back _

John Edgar

NULL

Queue q;

O 0 9 9 QO

.insert(6);
.insert(17);
.insert(3);
.insert(42);
.remove();

111

List Queue Example

front
17
3
2
back _

John Edgar

NULL

Queue q;

O 0 9 9 QO

.insert(6);
.insert(17);
.insert(3);
.insert(42);
.remove();

112

Other Simple Data Structures

Deques

A deque is a double ended queue

That allows items to be inserted and removed
from either end

Deque implementations

Circular array, similar to the queue
implementation

Linked List

Singly linked list implementations are not efficient

John Edgar 114

Priority Queues

Items in a priority queue are given a priority
value

Which could be numerical or something else
The highest priority item is removed first
Uses include

System requests
Data structure to support Dijkstra’s Algorithm

John Edgar 115

Priority Queue Problem

Can items be inserted and removed efficiently
from a priority queue?

Using an array, or
Using a linked list?
Note that items are not removed based on the

order in which they are inserted
We will return to priority queues later in the

course

John Edgar

Template Example

Visual Studio Presentation

