
Arrays and Linked Lists

 Abstract Data Types
 Stacks
 Queues
 Priority Queues and Deques

John Edgar 2

And Stacks

 Reverse Polish Notation (RPN)

▪ Also known as postfix notation

▪ A mathematical notation

▪ Where every operator follows its operands

▪ Invented by Jan Łukasiewicz in 1920

 Example

▪ Infix: 5 + ((1 + 2) * 4) − 3

▪ RPN: 5 1 2 + 4 * + 3 –

John Edgar 4

5 1 2 + 4 * + 3 –

John Edgar 5

5

store 5 store 1 store 2

Apply + to the last two operands

1

2

To evaluate a postfix expression read it from left to right

3

4

John Edgar 6

5

store 5 store 1 store 2

Apply + to the last two operands

store 3 store 4

Apply * to the last two operands

To evaluate a postfix expression read it from left to right

5 1 2 + 4 * + 3 –

John Edgar 7

5

store 5 store 1 store 2

Apply + to the last two operands

Apply * to the last two operands

store 12
12

Apply + to the last two operands

To evaluate a postfix expression read it from left to right

5 1 2 + 4 * + 3 –

store 3 store 4

John Edgar 8

store 5 store 1 store 2

Apply + to the last two operands

Apply * to the last two operands

store 3

Apply + to the last two operands

store 17

3

Apply - to the last two operands

17

To evaluate a postfix expression read it from left to right

5 1 2 + 4 * + 3 –

store 12

store 3 store 4

John Edgar 9

store 5 store 1 store 2

Apply + to the last two operands

Apply * to the last two operands

Apply + to the last two operands

Apply - to the last two operands

14

store 14

retrieve answer

To evaluate a postfix expression read it from left to right

5 1 2 + 4 * + 3 –

store 12

store 3 store 4

store 3store 17

John Edgar

 for each input symbol

▪ if symbol is operand

▪ store(operand)

▪ if symbol is operator

▪ LHS = remove()

▪ RHS = remove()

▪ result = LHS operator RHS

▪ store(result)

 result = remove()

10

 What are the storage properties of the data
structure that was used?

▪ Specifically how are items stored and removed?

 Note that items are never inserted between
existing items

▪ The last item to be entered is the first item to be
removed

▪ Known as LIFO (Last In First Out)

 This data structure is referred to as a stack

John Edgar 11

John Edgar 12

 A stack only allows items to be inserted and
removed at one end

▪ We call this end the top of the stack

▪ The other end is called the bottom

 Access to other items in the stack
is not allowed

John Edgar 13

 A stack is a natural choice to store data for
postfix notation

▪ Operands are stored at the top of the stack

▪ And removed from the top of the stack

 Notice that we have not (yet) discussed how
a stack should be implemented

▪ Just what it does

 An example of an Abstract Data Type

John Edgar 14

 A collection of data

▪ Describes what data is stored but not how it is
stored

 Set of operations on the data

▪ Describes precisely what effect the operations
have on the data but

▪ Does not specify how operations are carried out

 An ADT is not an actual (concrete) structure

John Edgar 16

 The term concrete data type is usually used in
contrast with an ADT

 An ADT is a collection of data and a set of
operations on the data

 A concrete data type is an implementation of
an ADT using a data structure

▪ A construct that is defined in a programming
language to store a collection of data

▪ Such as an array

John Edgar 17

 Mutators
 Accessors
 Constructors
 Other

John Edgar 18

John Edgar

 Mutators

▪ Often known as setters

▪ Operations that change the contents of an ADT, usually
subdivided into
▪ Adding data to a data collection and

▪ Removing data from a collection

▪ Different ADTs allow data to be added and removed at
different locations

 Accessors
 Constructors
 Other

19

John Edgar

 Mutators
 Accessors
▪ Often known as getters
▪ Retrieve data from the collection

▪ e.g. the item at the top of the stack

▪ Ask questions about the data collection
▪ Is it full?
▪ How many items are stored?
▪ …

 Constructors
 Other

20

John Edgar

 Mutators

 Accessors

 Constructors

▪ Constructors are used to create an ADT

▪ Either empty

▪ Or initialized with data

 Other

21

 Information related to how storage is
implemented should be hidden

 An ADT’s operations can be used in the
design of other modules or applications

▪ Other modules do not need to know the
implementation of the ADT operations

▪ Which allows implementation of operations to be
changed without affecting other modules

John Edgar 22

 Operations should be specified in detail without
discussing implementation issues

▪ In C++ a class to implement an ADT is divided into
header (.h) and implementation (.cpp) files

 The header file contains the class definition
which only includes method prototypes

▪ Occasionally there are exceptions to this

 The implementation file contains the definitions
of the methods

John Edgar 23

Another Stack Example

 Programs typically involve more than one
function call and contain

▪ A main function

▪ Which calls other functions as required

 Each function requires space in main memory
for its variables and parameters

▪ This space must be allocated and de-allocated in
some organized way

25John Edgar

 Most programming languages use a call stack to
implement function calling

▪ When a method is called, its line number and other data are
pushed onto the call stack

▪ When a method terminates, it is popped from the call stack

▪ Execution restarts at the indicated line number in the method
currently at the top of the stack

 Stack memory is allocated and de-allocated without
explicit instructions from a programmer

▪ And is therefore referred to as automatic storage

John Edgar 26

John Edgar 27

The call stack – from the Visual Studio Debug window

Top of the stack: most
recently called method.

Bottom of the stack: least
recently called method

 Information stored on the call stack about a
function is itself stored in a stack frame

▪ Sometimes referred to as an activation record

 Stack frames store

▪ The arguments passed to the function

▪ The return address back to the calling function

▪ Space for the function’s local variables

28John Edgar

 When a function is called space is allocated
for it on the call stack

▪ This space is allocated sequentially

 Once a function has run the space it used on
the call stack is de-allocated

▪ Allowing it to be re-used

 Execution returns to the previous function

▪ Which is now at the top of the call stack

29John Edgar

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

30John Edgar

main

n 2

arr 5 17

sum -

call stack

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

squareArray

a aff02b5c

n 2

i 0

x 5

power

x 5

exp 2

result 1

i 1

main

n 2

arr 5 17

sum -

main

n 2

arr 25 17

sum -

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

31John Edgar

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

squareArray

a aff02b5c

n 2

i 0

x 5

power

x 5

exp 2

result 1

i 1

power

x 5

exp 2

result 5

i 2

power

x 5

exp 2

result 25

i 3

call stack

main

n 2

arr 25 17

sum -

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

32John Edgar

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

squareArray

a aff02b5c

n 2

i 0

x 5

squareArray

a aff02b5c

n 2

i 1

x 17

call stack

main

n 2

arr 25 289

sum -

squareArray

a aff02b5c

n 2

i 1

x 17

squareArray

a aff02b5c

n 2

i 2

x 17

power

x 17

exp 2

result 1

i 1

power

x 17

exp 2

result 17

i 2

power

x 17

exp 2

result 289

i 3

main

n 2

arr 25 17

sum -

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

33John Edgar

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

call stack

main

n 2

arr 25 289

sum -

main

n 2

arr 25 289

sum 314

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

34John Edgar

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

sumArray

a aff02b5c

n 2

sum 0

i 0

sumArray

a aff02b5c

n 2

sum 25

i 1

sumArray

a aff02b5c

n 2

sum 314

i 2

call stack

 In the example, functions returned values
assigned to variables in other functions

▪ They did not affect the amount of memory
required by previously called functions

▪ That is, functions below them on the call stack

 Stack memory is sequentially allocated

▪ It is not possible to increase memory assigned to a
function previously pushed onto the stack

35John Edgar

With an Array

 A stack should implement at least the first two
of these operations

▪ push – insert an item at the top of the stack

▪ pop – remove and return the top item

▪ peek – return the top item

 ADT operations should be performed efficiently

▪ The definition of efficiency varies from ADT to ADT

▪ The order of the items in a stack is based solely on the
order in which they arrive

John Edgar 37

 Assume that we plan on using a stack that
will store integers and have these methods

▪ void push(int)

▪ int pop()

 We can design other modules that use these
methods

▪ Without having to know anything about how they,
or the stack itself, are implemented

John Edgar 38

 We will use classes to encapsulate stacks

▪ Encapsulate – enclose in

 A class is a programming construct that
contains

▪ Data for the class, and

▪ Operations of the class

▪ More about classes later …

John Edgar 39

 The stack ADT can be implemented using a

variety of data structures, e.g.

▪ Arrays

▪ Linked Lists

 Both implementations must implement all the

stack operations

▪ In constant time

▪ Time that is independent of the number of items in the stack

John Edgar 40

 Use an array to implement a stack
 We need to keep track of the index that

represents the top of the stack

▪ When we insert an item increment this index

▪ When we delete an item decrement this index

 Insertion or deletion time is independent of
the number of items in the stack

John Edgar 41

John Edgar 42

index of top is current size – 1
Stack st();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3

6 1 7 8

0 1 2 3 4 5

6 1 7 8 13

0 1 2 3 4 5

6 1 7 8

0 1 2 3 4 5

6 1 7

0 1 2 3 4 5

index of top is current size – 1
Stack st();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3
st.push(13); //top = 4

index of top is current size – 1
Stack st();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3
st.push(13); //top = 4
st.pop(); //top = 3

index of top is current size – 1
Stack st();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3
st.push(13); //top = 4
st.pop(); //top = 3
st.pop(); //top = 2

 Easy to implement a stack with an array

▪ And push and pop can be performed in constant
time

 Once the array is full

▪ No new values can be inserted or

▪ A new, larger, array has to be created

▪ And the existing items copied to this new array

▪ Known as a dynamic array

John Edgar 43

 Arrays contain identically typed values

▪ These values are stored sequentially in main memory

 Values are stored at specific numbered positions
in the array called indexes

▪ The first value is stored at index 0, the second at index
1, the ith at index i-1, and so on

▪ The last item is stored at position n-1, assuming that
the array is of size n

▪ Referred to as zero-based indexing

John Edgar 45

index value

0 3

1 7

2 6

3 8

4 1

5 7

6 2

index value

0 3

1 7

2 6

3 8

4 1

5 11

6 2

 int arr[] = {3,7,6,8,1,7,2};
▪ Creates an integer array with 7 elements

 To access an element refer to the array
name and the index of that element
▪ int x = arr[3]; assigns the value of the

fourth array element (8) to x

▪ arr[5] = 11; changes the sixth
element of the array from 7 to 11

▪ arr[7] = 3; results in an error
because the index is out of bounds

John Edgar 46

In C++ the error is an unexpected run-time or logic error

An IDE may raise a debug error after termination

int grade[4];int grade[4];

grade[2] = 23;

John Edgar 47

Declares an array variable of size 4

grade is a constant pointer to the array
and stores the address of the array

The array is shown as not storing any
values – although this isn’t really the case

Assigns 23 to the third element of grade

23

But how does the program know where
grade[2] is?

 Access to array elements is very fast
 An array variable refers to the array

▪ Storing the main memory address of the first element

▪ The address is stored as number, with each address
referring to one byte of memory

▪ Address 0 would be the first byte

▪ Address 1 would be the second byte

▪ Address 20786 would be the twenty thousand, seven hundred
and eighty seventh byte

▪ …

John Edgar 48

 Consider grade[2] = 23;

▪ How do we find this element in the array?

 Consider what we know

▪ The address of the first array element

▪ The type of the values stored in the array
▪ And therefore the size of each of the array elements

▪ The index of the element to be accessed

 We can therefore calculate the address of the element
to be accessed, which equals

▪ address of first element + (index * type size)

John Edgar 49

…

1280 1290

1281 1291

1282 1292

1283 1293

1284 1294

1285 1295

1286 1296

1287 1297

1288 1298

1289 1299

…

John Edgar 50

The integer stored at
grade[2] is located
at byte:

1282 + 2 * 4 =

1290

grade

Stores a pointer to the
start of the array, in this
case byte 1282

 Array variables are pointers

▪ An array variable argument to a function passes
the address of the array

▪ And not a copy of the array

 Changes made to the array by a function are
made to the original (one-and-only) array

▪ If this is not desired, a copy of the array should be
made within the function

John Edgar 51

 What if array positions carry meaning?

▪ An array that is sorted by name, or grade or some
other value

▪ Or an array where the position corresponds to a
position of some entity in the world

 The ordering should be maintained when
elements are inserted or removed

John Edgar 52

 When an item is inserted either

▪ Write over the element at the given index or

▪ Move the element, and all elements after it, up one
position

 When an item is removed either

▪ Leave gaps in the array, i.e. array elements that don't
represent values or

▪ Move all the values after the removed value down one
index

John Edgar 53

 The size of an array must be specified when it
is created

▪ And cannot then be changed

 If the array is full, values cannot be inserted

▪ There are, time consuming, ways around this

▪ To avoid this problem we can make arrays much
larger than they are needed

▪ However this wastes space

John Edgar 54

 Good things about arrays

▪ Fast, random access, of elements using a simple offset
calculation

▪ Very storage space efficient, as little main memory is
required other than the data itself

▪ Easy to use

 Bad things about arrays

▪ Slow deletion and insertion for ordered arrays

▪ Size must be known when the array is created
▪ Or possibly beforehand

▪ An array is either full or contains unused elements

John Edgar 55

Another Review

John Edgar

 Arrays are declared just like single variables
except that the name is followed by []s

 The []s should contain the size of the array
which must be a constant or literal integer

▪ int age[100];

▪ const int DAYS = 365;

▪ double temperatures[DAYS];

57

John Edgar

 Arrays can be initialized

▪ One element at a time

▪ By using a for loop

▪ Or by assigning the array values on the same line
as the declaration

▪ int fib[] = {0,1,1,2,3,5,8,13};

▪ Note that the size does not have to be specified
since it can be derived

58

John Edgar

 A new array cannot be assigned to an existing array

int arr1[4];

int arr2[4];

…

arr1 = arr2; //can't do this!

arr1 = {1,3,5,7}; //… or this …

 Array elements can be assigned values

for(int i=0; i < 4; i++) {

arr1[i] = arr2[i];

}

59

John Edgar

 An array parameter looks just like an array
variable

▪ Except that the size is not specified

 C++ arrays do not have a size member

▪ Or any members, since they are not classes

▪ Therefore, it is common to pass functions the size
of array parameters

 For example

▪ int sum(int arr[], int n)

60

John Edgar

 Array variables are passed to functions in the
standard way

▪ sum(grades, 4);

61

John Edgar

 An array variable records the address of the
first element of the array

▪ This address cannot be changed after the array
has been declared

▪ It is therefore a constant pointer

 This explains why existing array variables
cannot be assigned new arrays

 And why arrays passed to functions may be
changed by those functions

62

John Edgar

 C++ gives programmers a lot of control over where
variables are located in memory

 There are three classes of main memory

▪ Static

▪ Automatic

▪ Dynamic

 Automatic memory is generally used to allocate space
for variables declared inside functions

▪ Unless those variables are specifically assigned to another
class of storage

63

John Edgar

 Arrays are allocated space in automatic
storage

▪ At least as they have been discussed so far, and

▪ Assuming that they were declared in a function

 Variables allocated space on the call stack are
not permitted to change size

▪ As stack memory is allocated in sequence and this
could result other variables being over-written

64

 What happens if we want to determine how
much memory to allocate at run time?

▪ Stack memory size is determined at compile time
so it would need to be allocated somewhere else

▪ Let’s call somewhere else the heap or the free store

 We still need automatic variables that refer or
point to the dynamically allocated memory

▪ In C++ such variables are pointers

65John Edgar

 Create a variable to store an address

▪ A pointer to the type of data to be stored

▪ Addresses have a fixed size

▪ If there is initially no address it should be assigned a
special value (NULL)

 Create new data in dynamic memory

▪ This may be done when needed (i.e. at run time)

 Assign the address of the data to the pointer
 This involves more a more complex management

system than using automatic memory

66John Edgar

John Edgar

 Arrays created in dynamic memory are
indexed just like other arrays

int* p_arr = new int[100];

for (int i=0; i < 100; ++i){

p_arr[i] = i+1;

}

 Pointers to arrays can be assigned new arrays

delete[] p_arr; //release memory

p_arr = new int[1000000];

67

0

int* seq = NULL;
double x = 2.397;
seq = sequence(1, 3);

// Returns pointer to array {start, start+1, … start+n-1}
int* sequence(int start, int n){

int* result = new int[n];
for(int i=o; i < n; i++) {

result[i] = start + i;
}
return result;

}

seq x

2.397
1 2 3

Builds array in dynamic
storage (heap, free store)

2a34 is the main memory address of the array

68John Edgar

2a34

main memory

stack heap

2a34

int seq = NULL;
double x = 2.397;
seq = sequence(1, 3);
seq = sequence(4, 5);

// Returns pointer to array {start, start+1, … start+n-1}
int* sequence(int start, int n){

int* result = new int[n];
for(int i=o; i < n; i++) {

result[i] = start + i;
}
return result;

}

main memory

seq

2.397
1 2 3

69John Edgar

47b1

4 5 6

memory leak!

7 8

stack heap

x

 When a function call is complete its stack

memory is released and can be re-used

 Dynamic memory should also be released

▪ Failing to do so results in a memory leak

 It is sometimes not easy to determine when

dynamic memory should be released

▪ Data might be referred to by more than one pointer

▪ Memory should only be released when it is no longer

referenced by any pointer

70John Edgar

 When should a data object be created in
dynamic memory?

▪ When the object is required to change size, or

▪ If it is not known if the object will be required

 Languages have different approaches to
using static and dynamic memory

▪ In C++ the programmer can choose whether to
assign data to static or dynamic memory

71John Edgar

 It would be nice to have a data structure that is

▪ Dynamic

▪ Does fast insertions/deletions in the middle

 We can achieve this using linked lists …

John Edgar 73

 A linked list is a dynamic data structure that consists
of nodes linked together

 A node is a data structure that contains

▪ data

▪ the location of the next node

John Edgar 74

45

John Edgar

 A node contains the address of the next node
in the list

▪ In C++ this is recorded as a pointer to a node

 Nodes are created in dynamic memory

▪ And their memory locations are not in sequence

 The data attribute of a node varies depending
on what the node is intended to store

75

 A linked list is a chain of nodes where each node
stores the address of the next node

John Edgar 76

45head 29 13 42 NULL

class Node {
public:

int data;
Node* next;

}

John Edgar 77

0

Nodes point to other nodes, so
the pointer must be of type Node

Node* a = new Node(7, null);

John Edgar 78

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

7 NULL

a

Node* a = new Node(7, null);

John Edgar 79

7 NULL

a

Node* a = new Node(7, null);
a->next = new Node(45, null);

45 NULL

a->data

a->next->data a->next->next

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

Node* a = new Node(7, null);
a->next = new Node(45, null);

John Edgar 80

7

a

45 NULL

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;

p

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;

John Edgar 81

7

a

45 NULL

p

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;
p = p->next; // go to next node

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;
p = p->next; // go to next node

John Edgar 82

7

a

45 NULL

p

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;
p = p->next; // go to next node
p = p->next; // go to next node

NULL

In practice insertion and traversal
would be methods of a linked list class

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

 The previous example showed a list built out
of nodes

 In practice a linked list is encapsulated in its
own class

▪ Allowing new nodes to be easily inserted and
removed as desired

▪ The linked list class has a pointer to the (node at
the) head of the list

 Implementations of linked lists vary

John Edgar 83

With a Linked List

 Nodes should be inserted and removed at the
head of the list

▪ New nodes are pushed onto the front of the list,
so that they become the top of the stack

▪ Nodes are popped from the front of the list

 Straight-forward linked list implementation

▪ Both push and pop affect the front of the list

▪ There is therefore no need for either algorithm to
traverse the entire list

John Edgar 85

John Edgar 86

void push(int x){
// Make a new node whose next pointer is the
// existing list

Node* newNode = new Node(x, top);
top = newNode; //head points to new node

}

int pop(){
// Return the value at the head of the list

int temp = top->data;
Node* p = top;
top = top->next;
delete p; // deallocate old head
return temp;

}

What happens if the list
to be popped is empty?

John Edgar 87

Stack st;
st.push(6);

6 NULL

top NULL

John Edgar 88

Stack st;
st.push(6);

top

Stack st;
st.push(6);
st.push(1);

1

6 NULL

7

John Edgar 89

Stack st;
st.push(6);
st.push(1);

top

Stack st;
st.push(6);
st.push(1);
st.push(7);

1

6 NULL

7

John Edgar 90

Stack st;
st.push(6);
st.push(1);
st.push(7);

top

Stack st;
st.push(6);
st.push(1);
st.push(7);
st.push(42);

1

6 NULL

42

7

John Edgar 91

Stack st;
st.push(6);
st.push(1);
st.push(7);
st.push(42); top

Stack st;
st.push(6);
st.push(1);
st.push(7);
st.push(42);
st.pop();

1

6 NULL

42

7

John Edgar 92

Stack st;
st.push(6);
st.push(1);
st.push(7);
st.push(42);
st.pop();

top

1

6 NULL

Visual Studio Presentation

 Assume that we want to store data for a print
queue for a student printer

▪ Student ID

▪ Time

▪ File name

 The printer is to be assigned to file in the
order in which they are received

▪ A fair algorithm

John Edgar 95

 To maintain the print queue we would require
at least two classes

▪ Request class

▪ Collection class to store requests

 The collection class should support the
desired behaviour

▪ FIFO (First In First Out)

▪ The ADT is a queue

John Edgar 96

 In a queue items are inserted at the back and

removed from the front

▪ As an aside queue is just the British (i.e. correct☺)

word for a line (or line-up)

 Queues are FIFO (First In First Out) data

structures – fair data structures

John Edgar 97

 Server requests

▪ Instant messaging servers queue up incoming
messages

▪ Database requests

▪ Why might this be a bad idea for all such requests?

 Print queues
 Operating systems often use queues to schedule

CPU jobs
 Various algorithm implementations

John Edgar 98

 A queue should implement at least the first two
of these operations:

▪ insert – insert item at the back of the queue

▪ remove – remove an item from the front

▪ peek – return the item at the front of the queue
without removing it

 Like stacks, it is assumed that these operations
will be implemented efficiently

▪ That is, in constant time

John Edgar 99

with an Array

 Consider using an array as the underlying
structure for a queue, we could

▪ Make the back of the queue the current size of the
array, much like the stack implementation

▪ Initially make the front of the queue index 0

▪ Inserting an item is easy

 What happens when items are removed?

▪ Either move all remaining items down – slow

▪ Or increment the front index – wastes space

John Edgar 101

 Neat trick: use a circular array to insert and remove
items from a queue in constant time

 The idea of a circular array is that the end of the
array “wraps around” to the start of the array

0 1 2 3 4 5 6 7

John Edgar 102

0

1

3

2

4

5

6

7

 The mod operator (%) calculates remainders:

▪ 1%5 = 1, 2%5 = 2, 5%5 = 0, 8%5 = 3

 The mod operator can be used to calculate the front
and back positions in a circular array

▪ Thereby avoiding comparisons to the array size

▪ The back of the queue is:
▪ (front + num) % queue.length

▪ where num is the number of items in the queue

▪ After removing an item the front of the queue is:

▪ (front + 1) % queue.length;

John Edgar 103

6 4 3 13 7

0 1 2 3 4 5

4 3 13 7

0 1 2 3 4 5

4 3 13 7 11

0 1 2 3 4 5

3 13 7 11

0 1 2 3 4 5

42 3 13 7 11

0 1 2 3 4 5

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0
q.remove(); //front = 1

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0
q.remove(); //front = 1
q.insert(11); //front = 1

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0
q.remove(); //front = 1
q.insert(11); //front = 1
q.remove(); //front = 2

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0
q.remove(); //front = 1
q.insert(11); //front = 1
q.remove(); //front = 2
q.insert(42); //front = 2

John Edgar 104

With a Linked List

 Removing items from the front of the queue
is straightforward

 Items should be inserted at the back of the
queue in constant time

▪ So we must avoid traversing through the list

▪ Use a second node pointer to keep track of the
node at the back of the queue

▪ Requires a little extra administration

John Edgar 106

Queue q;
q.insert(6);

John Edgar 107

front

NULL

6

back

NULL

NULL

John Edgar 108

front

6

back

17 NULL

Queue q;
q.insert(6);
Queue q;
q.insert(6);
q.insert(17);

NULL

17

3

Queue q;
q.insert(6);
q.insert(17);

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);

John Edgar 109

front

6

back

NULL

NULL

17

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);

John Edgar 110

front

3

6

back
42 NULL

NULL

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);
q.remove();

17

John Edgar 111

front

3

6

back
42 NULL

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);
q.remove();

17

John Edgar 112

front

3

back
42 NULL

John Edgar 113

 A deque is a double ended queue

▪ That allows items to be inserted and removed

from either end

 Deque implementations

▪ Circular array, similar to the queue

implementation

▪ Linked List

▪ Singly linked list implementations are not efficient

John Edgar 114

 Items in a priority queue are given a priority
value

▪ Which could be numerical or something else

 The highest priority item is removed first
 Uses include

▪ System requests

▪ Data structure to support Dijkstra’s Algorithm

John Edgar 115

 Can items be inserted and removed efficiently
from a priority queue?

▪ Using an array, or

▪ Using a linked list?

 Note that items are not removed based on the
order in which they are inserted

 We will return to priority queues later in the
course

John Edgar 116

Visual Studio Presentation

