
Arrays and Linked Lists

 Abstract Data Types
 Stacks
 Queues
 Priority Queues and Deques

John Edgar 2

And Stacks

 Reverse Polish Notation (RPN)

▪ Also known as postfix notation

▪ A mathematical notation

▪ Where every operator follows its operands

▪ Invented by Jan Łukasiewicz in 1920

 Example

▪ Infix: 5 + ((1 + 2) * 4) − 3

▪ RPN: 5 1 2 + 4 * + 3 –

John Edgar 4

5 1 2 + 4 * + 3 –

John Edgar 5

5

store 5 store 1 store 2

Apply + to the last two operands

1

2

To evaluate a postfix expression read it from left to right

3

4

John Edgar 6

5

store 5 store 1 store 2

Apply + to the last two operands

store 3 store 4

Apply * to the last two operands

To evaluate a postfix expression read it from left to right

5 1 2 + 4 * + 3 –

John Edgar 7

5

store 5 store 1 store 2

Apply + to the last two operands

Apply * to the last two operands

store 12
12

Apply + to the last two operands

To evaluate a postfix expression read it from left to right

5 1 2 + 4 * + 3 –

store 3 store 4

John Edgar 8

store 5 store 1 store 2

Apply + to the last two operands

Apply * to the last two operands

store 3

Apply + to the last two operands

store 17

3

Apply - to the last two operands

17

To evaluate a postfix expression read it from left to right

5 1 2 + 4 * + 3 –

store 12

store 3 store 4

John Edgar 9

store 5 store 1 store 2

Apply + to the last two operands

Apply * to the last two operands

Apply + to the last two operands

Apply - to the last two operands

14

store 14

retrieve answer

To evaluate a postfix expression read it from left to right

5 1 2 + 4 * + 3 –

store 12

store 3 store 4

store 3store 17

John Edgar

 for each input symbol

▪ if symbol is operand

▪ store(operand)

▪ if symbol is operator

▪ LHS = remove()

▪ RHS = remove()

▪ result = LHS operator RHS

▪ store(result)

 result = remove()

10

 What are the storage properties of the data
structure that was used?

▪ Specifically how are items stored and removed?

 Note that items are never inserted between
existing items

▪ The last item to be entered is the first item to be
removed

▪ Known as LIFO (Last In First Out)

 This data structure is referred to as a stack

John Edgar 11

John Edgar 12

 A stack only allows items to be inserted and
removed at one end

▪ We call this end the top of the stack

▪ The other end is called the bottom

 Access to other items in the stack
is not allowed

John Edgar 13

 A stack is a natural choice to store data for
postfix notation

▪ Operands are stored at the top of the stack

▪ And removed from the top of the stack

 Notice that we have not (yet) discussed how
a stack should be implemented

▪ Just what it does

 An example of an Abstract Data Type

John Edgar 14

 A collection of data

▪ Describes what data is stored but not how it is
stored

 Set of operations on the data

▪ Describes precisely what effect the operations
have on the data but

▪ Does not specify how operations are carried out

 An ADT is not an actual (concrete) structure

John Edgar 16

 The term concrete data type is usually used in
contrast with an ADT

 An ADT is a collection of data and a set of
operations on the data

 A concrete data type is an implementation of
an ADT using a data structure

▪ A construct that is defined in a programming
language to store a collection of data

▪ Such as an array

John Edgar 17

 Mutators
 Accessors
 Constructors
 Other

John Edgar 18

John Edgar

 Mutators

▪ Often known as setters

▪ Operations that change the contents of an ADT, usually
subdivided into
▪ Adding data to a data collection and

▪ Removing data from a collection

▪ Different ADTs allow data to be added and removed at
different locations

 Accessors
 Constructors
 Other

19

John Edgar

 Mutators
 Accessors
▪ Often known as getters
▪ Retrieve data from the collection

▪ e.g. the item at the top of the stack

▪ Ask questions about the data collection
▪ Is it full?
▪ How many items are stored?
▪ …

 Constructors
 Other

20

John Edgar

 Mutators

 Accessors

 Constructors

▪ Constructors are used to create an ADT

▪ Either empty

▪ Or initialized with data

 Other

21

 Information related to how storage is
implemented should be hidden

 An ADT’s operations can be used in the
design of other modules or applications

▪ Other modules do not need to know the
implementation of the ADT operations

▪ Which allows implementation of operations to be
changed without affecting other modules

John Edgar 22

 Operations should be specified in detail without
discussing implementation issues

▪ In C++ a class to implement an ADT is divided into
header (.h) and implementation (.cpp) files

 The header file contains the class definition
which only includes method prototypes

▪ Occasionally there are exceptions to this

 The implementation file contains the definitions
of the methods

John Edgar 23

Another Stack Example

 Programs typically involve more than one
function call and contain

▪ A main function

▪ Which calls other functions as required

 Each function requires space in main memory
for its variables and parameters

▪ This space must be allocated and de-allocated in
some organized way

25John Edgar

 Most programming languages use a call stack to
implement function calling

▪ When a method is called, its line number and other data are
pushed onto the call stack

▪ When a method terminates, it is popped from the call stack

▪ Execution restarts at the indicated line number in the method
currently at the top of the stack

 Stack memory is allocated and de-allocated without
explicit instructions from a programmer

▪ And is therefore referred to as automatic storage

John Edgar 26

John Edgar 27

The call stack – from the Visual Studio Debug window

Top of the stack: most
recently called method.

Bottom of the stack: least
recently called method

 Information stored on the call stack about a
function is itself stored in a stack frame

▪ Sometimes referred to as an activation record

 Stack frames store

▪ The arguments passed to the function

▪ The return address back to the calling function

▪ Space for the function’s local variables

28John Edgar

 When a function is called space is allocated
for it on the call stack

▪ This space is allocated sequentially

 Once a function has run the space it used on
the call stack is de-allocated

▪ Allowing it to be re-used

 Execution returns to the previous function

▪ Which is now at the top of the call stack

29John Edgar

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

30John Edgar

main

n 2

arr 5 17

sum -

call stack

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

squareArray

a aff02b5c

n 2

i 0

x 5

power

x 5

exp 2

result 1

i 1

main

n 2

arr 5 17

sum -

main

n 2

arr 25 17

sum -

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

31John Edgar

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

squareArray

a aff02b5c

n 2

i 0

x 5

power

x 5

exp 2

result 1

i 1

power

x 5

exp 2

result 5

i 2

power

x 5

exp 2

result 25

i 3

call stack

main

n 2

arr 25 17

sum -

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

32John Edgar

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

squareArray

a aff02b5c

n 2

i 0

x 5

squareArray

a aff02b5c

n 2

i 1

x 17

call stack

main

n 2

arr 25 289

sum -

squareArray

a aff02b5c

n 2

i 1

x 17

squareArray

a aff02b5c

n 2

i 2

x 17

power

x 17

exp 2

result 1

i 1

power

x 17

exp 2

result 17

i 2

power

x 17

exp 2

result 289

i 3

main

n 2

arr 25 17

sum -

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

33John Edgar

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

call stack

main

n 2

arr 25 289

sum -

main

n 2

arr 25 289

sum 314

double power(double x, int exp){
double result = 1;
for(int i=1; i <= exp; i++){

result *= x;
}
return result;

}

int main(){
int n = 2;
double arr[] = {5,17};
squareArray(arr, n);
int sum = sumArray(arr, n);
cout << sum << endl;
return 0;

}

void squareArray(int a[], n){
for(int i=0; i < n; i++){

int x = a[i];
a[i] = power(x, 2);

}
}

34John Edgar

double sumArray(double a[], int n){
double sum = 0;
for(int i=0; i < n; i++){

sum += a[i];
}
return sum;

}

sumArray

a aff02b5c

n 2

sum 0

i 0

sumArray

a aff02b5c

n 2

sum 25

i 1

sumArray

a aff02b5c

n 2

sum 314

i 2

call stack

 In the example, functions returned values
assigned to variables in other functions

▪ They did not affect the amount of memory
required by previously called functions

▪ That is, functions below them on the call stack

 Stack memory is sequentially allocated

▪ It is not possible to increase memory assigned to a
function previously pushed onto the stack

35John Edgar

With an Array

 A stack should implement at least the first two
of these operations

▪ push – insert an item at the top of the stack

▪ pop – remove and return the top item

▪ peek – return the top item

 ADT operations should be performed efficiently

▪ The definition of efficiency varies from ADT to ADT

▪ The order of the items in a stack is based solely on the
order in which they arrive

John Edgar 37

 Assume that we plan on using a stack that
will store integers and have these methods

▪ void push(int)

▪ int pop()

 We can design other modules that use these
methods

▪ Without having to know anything about how they,
or the stack itself, are implemented

John Edgar 38

 We will use classes to encapsulate stacks

▪ Encapsulate – enclose in

 A class is a programming construct that
contains

▪ Data for the class, and

▪ Operations of the class

▪ More about classes later …

John Edgar 39

 The stack ADT can be implemented using a

variety of data structures, e.g.

▪ Arrays

▪ Linked Lists

 Both implementations must implement all the

stack operations

▪ In constant time

▪ Time that is independent of the number of items in the stack

John Edgar 40

 Use an array to implement a stack
 We need to keep track of the index that

represents the top of the stack

▪ When we insert an item increment this index

▪ When we delete an item decrement this index

 Insertion or deletion time is independent of
the number of items in the stack

John Edgar 41

John Edgar 42

index of top is current size – 1
Stack st();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3

6 1 7 8

0 1 2 3 4 5

6 1 7 8 13

0 1 2 3 4 5

6 1 7 8

0 1 2 3 4 5

6 1 7

0 1 2 3 4 5

index of top is current size – 1
Stack st();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3
st.push(13); //top = 4

index of top is current size – 1
Stack st();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3
st.push(13); //top = 4
st.pop(); //top = 3

index of top is current size – 1
Stack st();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3
st.push(13); //top = 4
st.pop(); //top = 3
st.pop(); //top = 2

 Easy to implement a stack with an array

▪ And push and pop can be performed in constant
time

 Once the array is full

▪ No new values can be inserted or

▪ A new, larger, array has to be created

▪ And the existing items copied to this new array

▪ Known as a dynamic array

John Edgar 43

 Arrays contain identically typed values

▪ These values are stored sequentially in main memory

 Values are stored at specific numbered positions
in the array called indexes

▪ The first value is stored at index 0, the second at index
1, the ith at index i-1, and so on

▪ The last item is stored at position n-1, assuming that
the array is of size n

▪ Referred to as zero-based indexing

John Edgar 45

index value

0 3

1 7

2 6

3 8

4 1

5 7

6 2

index value

0 3

1 7

2 6

3 8

4 1

5 11

6 2

 int arr[] = {3,7,6,8,1,7,2};
▪ Creates an integer array with 7 elements

 To access an element refer to the array
name and the index of that element
▪ int x = arr[3]; assigns the value of the

fourth array element (8) to x

▪ arr[5] = 11; changes the sixth
element of the array from 7 to 11

▪ arr[7] = 3; results in an error
because the index is out of bounds

John Edgar 46

In C++ the error is an unexpected run-time or logic error

An IDE may raise a debug error after termination

int grade[4];int grade[4];

grade[2] = 23;

John Edgar 47

Declares an array variable of size 4

grade is a constant pointer to the array
and stores the address of the array

The array is shown as not storing any
values – although this isn’t really the case

Assigns 23 to the third element of grade

23

But how does the program know where
grade[2] is?

 Access to array elements is very fast
 An array variable refers to the array

▪ Storing the main memory address of the first element

▪ The address is stored as number, with each address
referring to one byte of memory

▪ Address 0 would be the first byte

▪ Address 1 would be the second byte

▪ Address 20786 would be the twenty thousand, seven hundred
and eighty seventh byte

▪ …

John Edgar 48

 Consider grade[2] = 23;

▪ How do we find this element in the array?

 Consider what we know

▪ The address of the first array element

▪ The type of the values stored in the array
▪ And therefore the size of each of the array elements

▪ The index of the element to be accessed

 We can therefore calculate the address of the element
to be accessed, which equals

▪ address of first element + (index * type size)

John Edgar 49

…

1280 1290

1281 1291

1282 1292

1283 1293

1284 1294

1285 1295

1286 1296

1287 1297

1288 1298

1289 1299

…

John Edgar 50

The integer stored at
grade[2] is located
at byte:

1282 + 2 * 4 =

1290

grade

Stores a pointer to the
start of the array, in this
case byte 1282

 Array variables are pointers

▪ An array variable argument to a function passes
the address of the array

▪ And not a copy of the array

 Changes made to the array by a function are
made to the original (one-and-only) array

▪ If this is not desired, a copy of the array should be
made within the function

John Edgar 51

 What if array positions carry meaning?

▪ An array that is sorted by name, or grade or some
other value

▪ Or an array where the position corresponds to a
position of some entity in the world

 The ordering should be maintained when
elements are inserted or removed

John Edgar 52

 When an item is inserted either

▪ Write over the element at the given index or

▪ Move the element, and all elements after it, up one
position

 When an item is removed either

▪ Leave gaps in the array, i.e. array elements that don't
represent values or

▪ Move all the values after the removed value down one
index

John Edgar 53

 The size of an array must be specified when it
is created

▪ And cannot then be changed

 If the array is full, values cannot be inserted

▪ There are, time consuming, ways around this

▪ To avoid this problem we can make arrays much
larger than they are needed

▪ However this wastes space

John Edgar 54

 Good things about arrays

▪ Fast, random access, of elements using a simple offset
calculation

▪ Very storage space efficient, as little main memory is
required other than the data itself

▪ Easy to use

 Bad things about arrays

▪ Slow deletion and insertion for ordered arrays

▪ Size must be known when the array is created
▪ Or possibly beforehand

▪ An array is either full or contains unused elements

John Edgar 55

Another Review

John Edgar

 Arrays are declared just like single variables
except that the name is followed by []s

 The []s should contain the size of the array
which must be a constant or literal integer

▪ int age[100];

▪ const int DAYS = 365;

▪ double temperatures[DAYS];

57

John Edgar

 Arrays can be initialized

▪ One element at a time

▪ By using a for loop

▪ Or by assigning the array values on the same line
as the declaration

▪ int fib[] = {0,1,1,2,3,5,8,13};

▪ Note that the size does not have to be specified
since it can be derived

58

John Edgar

 A new array cannot be assigned to an existing array

int arr1[4];

int arr2[4];

…

arr1 = arr2; //can't do this!

arr1 = {1,3,5,7}; //… or this …

 Array elements can be assigned values

for(int i=0; i < 4; i++) {

arr1[i] = arr2[i];

}

59

John Edgar

 An array parameter looks just like an array
variable

▪ Except that the size is not specified

 C++ arrays do not have a size member

▪ Or any members, since they are not classes

▪ Therefore, it is common to pass functions the size
of array parameters

 For example

▪ int sum(int arr[], int n)

60

John Edgar

 Array variables are passed to functions in the
standard way

▪ sum(grades, 4);

61

John Edgar

 An array variable records the address of the
first element of the array

▪ This address cannot be changed after the array
has been declared

▪ It is therefore a constant pointer

 This explains why existing array variables
cannot be assigned new arrays

 And why arrays passed to functions may be
changed by those functions

62

John Edgar

 C++ gives programmers a lot of control over where
variables are located in memory

 There are three classes of main memory

▪ Static

▪ Automatic

▪ Dynamic

 Automatic memory is generally used to allocate space
for variables declared inside functions

▪ Unless those variables are specifically assigned to another
class of storage

63

John Edgar

 Arrays are allocated space in automatic
storage

▪ At least as they have been discussed so far, and

▪ Assuming that they were declared in a function

 Variables allocated space on the call stack are
not permitted to change size

▪ As stack memory is allocated in sequence and this
could result other variables being over-written

64

 What happens if we want to determine how
much memory to allocate at run time?

▪ Stack memory size is determined at compile time
so it would need to be allocated somewhere else

▪ Let’s call somewhere else the heap or the free store

 We still need automatic variables that refer or
point to the dynamically allocated memory

▪ In C++ such variables are pointers

65John Edgar

 Create a variable to store an address

▪ A pointer to the type of data to be stored

▪ Addresses have a fixed size

▪ If there is initially no address it should be assigned a
special value (NULL)

 Create new data in dynamic memory

▪ This may be done when needed (i.e. at run time)

 Assign the address of the data to the pointer
 This involves more a more complex management

system than using automatic memory

66John Edgar

John Edgar

 Arrays created in dynamic memory are
indexed just like other arrays

int* p_arr = new int[100];

for (int i=0; i < 100; ++i){

p_arr[i] = i+1;

}

 Pointers to arrays can be assigned new arrays

delete[] p_arr; //release memory

p_arr = new int[1000000];

67

0

int* seq = NULL;
double x = 2.397;
seq = sequence(1, 3);

// Returns pointer to array {start, start+1, … start+n-1}
int* sequence(int start, int n){

int* result = new int[n];
for(int i=o; i < n; i++) {

result[i] = start + i;
}
return result;

}

seq x

2.397
1 2 3

Builds array in dynamic
storage (heap, free store)

2a34 is the main memory address of the array

68John Edgar

2a34

main memory

stack heap

2a34

int seq = NULL;
double x = 2.397;
seq = sequence(1, 3);
seq = sequence(4, 5);

// Returns pointer to array {start, start+1, … start+n-1}
int* sequence(int start, int n){

int* result = new int[n];
for(int i=o; i < n; i++) {

result[i] = start + i;
}
return result;

}

main memory

seq

2.397
1 2 3

69John Edgar

47b1

4 5 6

memory leak!

7 8

stack heap

x

 When a function call is complete its stack

memory is released and can be re-used

 Dynamic memory should also be released

▪ Failing to do so results in a memory leak

 It is sometimes not easy to determine when

dynamic memory should be released

▪ Data might be referred to by more than one pointer

▪ Memory should only be released when it is no longer

referenced by any pointer

70John Edgar

 When should a data object be created in
dynamic memory?

▪ When the object is required to change size, or

▪ If it is not known if the object will be required

 Languages have different approaches to
using static and dynamic memory

▪ In C++ the programmer can choose whether to
assign data to static or dynamic memory

71John Edgar

 It would be nice to have a data structure that is

▪ Dynamic

▪ Does fast insertions/deletions in the middle

 We can achieve this using linked lists …

John Edgar 73

 A linked list is a dynamic data structure that consists
of nodes linked together

 A node is a data structure that contains

▪ data

▪ the location of the next node

John Edgar 74

45

John Edgar

 A node contains the address of the next node
in the list

▪ In C++ this is recorded as a pointer to a node

 Nodes are created in dynamic memory

▪ And their memory locations are not in sequence

 The data attribute of a node varies depending
on what the node is intended to store

75

 A linked list is a chain of nodes where each node
stores the address of the next node

John Edgar 76

45head 29 13 42 NULL

class Node {
public:

int data;
Node* next;

}

John Edgar 77

0

Nodes point to other nodes, so
the pointer must be of type Node

Node* a = new Node(7, null);

John Edgar 78

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

7 NULL

a

Node* a = new Node(7, null);

John Edgar 79

7 NULL

a

Node* a = new Node(7, null);
a->next = new Node(45, null);

45 NULL

a->data

a->next->data a->next->next

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

Node* a = new Node(7, null);
a->next = new Node(45, null);

John Edgar 80

7

a

45 NULL

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;

p

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;

John Edgar 81

7

a

45 NULL

p

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;
p = p->next; // go to next node

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;
p = p->next; // go to next node

John Edgar 82

7

a

45 NULL

p

Node* a = new Node(7, null);
a->next = new Node(45, null);
Node* p = a;
p = p->next; // go to next node
p = p->next; // go to next node

NULL

In practice insertion and traversal
would be methods of a linked list class

Assumes a constructor in the Node
class

Node(int value, Node* nd){
data = value;
next = nd;

}

 The previous example showed a list built out
of nodes

 In practice a linked list is encapsulated in its
own class

▪ Allowing new nodes to be easily inserted and
removed as desired

▪ The linked list class has a pointer to the (node at
the) head of the list

 Implementations of linked lists vary

John Edgar 83

With a Linked List

 Nodes should be inserted and removed at the
head of the list

▪ New nodes are pushed onto the front of the list,
so that they become the top of the stack

▪ Nodes are popped from the front of the list

 Straight-forward linked list implementation

▪ Both push and pop affect the front of the list

▪ There is therefore no need for either algorithm to
traverse the entire list

John Edgar 85

John Edgar 86

void push(int x){
// Make a new node whose next pointer is the
// existing list

Node* newNode = new Node(x, top);
top = newNode; //head points to new node

}

int pop(){
// Return the value at the head of the list

int temp = top->data;
Node* p = top;
top = top->next;
delete p; // deallocate old head
return temp;

}

What happens if the list
to be popped is empty?

John Edgar 87

Stack st;
st.push(6);

6 NULL

top NULL

John Edgar 88

Stack st;
st.push(6);

top

Stack st;
st.push(6);
st.push(1);

1

6 NULL

7

John Edgar 89

Stack st;
st.push(6);
st.push(1);

top

Stack st;
st.push(6);
st.push(1);
st.push(7);

1

6 NULL

7

John Edgar 90

Stack st;
st.push(6);
st.push(1);
st.push(7);

top

Stack st;
st.push(6);
st.push(1);
st.push(7);
st.push(42);

1

6 NULL

42

7

John Edgar 91

Stack st;
st.push(6);
st.push(1);
st.push(7);
st.push(42); top

Stack st;
st.push(6);
st.push(1);
st.push(7);
st.push(42);
st.pop();

1

6 NULL

42

7

John Edgar 92

Stack st;
st.push(6);
st.push(1);
st.push(7);
st.push(42);
st.pop();

top

1

6 NULL

Visual Studio Presentation

 Assume that we want to store data for a print
queue for a student printer

▪ Student ID

▪ Time

▪ File name

 The printer is to be assigned to file in the
order in which they are received

▪ A fair algorithm

John Edgar 95

 To maintain the print queue we would require
at least two classes

▪ Request class

▪ Collection class to store requests

 The collection class should support the
desired behaviour

▪ FIFO (First In First Out)

▪ The ADT is a queue

John Edgar 96

 In a queue items are inserted at the back and

removed from the front

▪ As an aside queue is just the British (i.e. correct☺)

word for a line (or line-up)

 Queues are FIFO (First In First Out) data

structures – fair data structures

John Edgar 97

 Server requests

▪ Instant messaging servers queue up incoming
messages

▪ Database requests

▪ Why might this be a bad idea for all such requests?

 Print queues
 Operating systems often use queues to schedule

CPU jobs
 Various algorithm implementations

John Edgar 98

 A queue should implement at least the first two
of these operations:

▪ insert – insert item at the back of the queue

▪ remove – remove an item from the front

▪ peek – return the item at the front of the queue
without removing it

 Like stacks, it is assumed that these operations
will be implemented efficiently

▪ That is, in constant time

John Edgar 99

with an Array

 Consider using an array as the underlying
structure for a queue, we could

▪ Make the back of the queue the current size of the
array, much like the stack implementation

▪ Initially make the front of the queue index 0

▪ Inserting an item is easy

 What happens when items are removed?

▪ Either move all remaining items down – slow

▪ Or increment the front index – wastes space

John Edgar 101

 Neat trick: use a circular array to insert and remove
items from a queue in constant time

 The idea of a circular array is that the end of the
array “wraps around” to the start of the array

0 1 2 3 4 5 6 7

John Edgar 102

0

1

3

2

4

5

6

7

 The mod operator (%) calculates remainders:

▪ 1%5 = 1, 2%5 = 2, 5%5 = 0, 8%5 = 3

 The mod operator can be used to calculate the front
and back positions in a circular array

▪ Thereby avoiding comparisons to the array size

▪ The back of the queue is:
▪ (front + num) % queue.length

▪ where num is the number of items in the queue

▪ After removing an item the front of the queue is:

▪ (front + 1) % queue.length;

John Edgar 103

6 4 3 13 7

0 1 2 3 4 5

4 3 13 7

0 1 2 3 4 5

4 3 13 7 11

0 1 2 3 4 5

3 13 7 11

0 1 2 3 4 5

42 3 13 7 11

0 1 2 3 4 5

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0
q.remove(); //front = 1

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0
q.remove(); //front = 1
q.insert(11); //front = 1

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0
q.remove(); //front = 1
q.insert(11); //front = 1
q.remove(); //front = 2

Queue q();
q.insert(6); //front = 0
q.insert(4); //front = 0
q.insert(3); //front = 0
q.insert(13); //front = 0
q.insert(7); //front = 0
q.remove(); //front = 1
q.insert(11); //front = 1
q.remove(); //front = 2
q.insert(42); //front = 2

John Edgar 104

With a Linked List

 Removing items from the front of the queue
is straightforward

 Items should be inserted at the back of the
queue in constant time

▪ So we must avoid traversing through the list

▪ Use a second node pointer to keep track of the
node at the back of the queue

▪ Requires a little extra administration

John Edgar 106

Queue q;
q.insert(6);

John Edgar 107

front

NULL

6

back

NULL

NULL

John Edgar 108

front

6

back

17 NULL

Queue q;
q.insert(6);
Queue q;
q.insert(6);
q.insert(17);

NULL

17

3

Queue q;
q.insert(6);
q.insert(17);

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);

John Edgar 109

front

6

back

NULL

NULL

17

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);

John Edgar 110

front

3

6

back
42 NULL

NULL

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);
q.remove();

17

John Edgar 111

front

3

6

back
42 NULL

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);

Queue q;
q.insert(6);
q.insert(17);
q.insert(3);
q.insert(42);
q.remove();

17

John Edgar 112

front

3

back
42 NULL

John Edgar 113

 A deque is a double ended queue

▪ That allows items to be inserted and removed

from either end

 Deque implementations

▪ Circular array, similar to the queue

implementation

▪ Linked List

▪ Singly linked list implementations are not efficient

John Edgar 114

 Items in a priority queue are given a priority
value

▪ Which could be numerical or something else

 The highest priority item is removed first
 Uses include

▪ System requests

▪ Data structure to support Dijkstra’s Algorithm

John Edgar 115

 Can items be inserted and removed efficiently
from a priority queue?

▪ Using an array, or

▪ Using a linked list?

 Note that items are not removed based on the
order in which they are inserted

 We will return to priority queues later in the
course

John Edgar 116

Visual Studio Presentation

