
CMPT 225



 http://www.cs.sfu.ca/CC/225/johnwill/

John Edgar 2

http://www.cs.sfu.ca/CC/225/johnwill/


 Assignments and labs – 30%
 Midterm exam in class – 20%
 Final exam – 50%

John Edgar 3



John Edgar 4



 Data Structures
 Algorithms
 Software Development
 Programming

John Edgar 5



 Data Structures and Abstract Data Types

▪ Stacks

▪ Queues

▪ Priority Queues

▪ Trees

▪ Hash Tables

▪ Graphs (if time)

 Algorithms
 Software Development
 Programming

John Edgar 6



 Data Structures
 Algorithms

▪ Tools – Recursion

▪ Efficiency –O Notation

▪ Algorithms to support data structures

▪ Sorting

 Software Development
 Programming

John Edgar 7



 Data Structures
 Algorithms
 Software Development

▪ Specification

▪ Design –OOP design

▪ Implementation

▪ Testing

 Programming

John Edgar 8



 Data Structures
 Algorithms
 Software Development
 Programming

▪ Implementing data structures and algorithms

▪ Understanding stack and heap memory use

▪ Recursion

▪ Writing robust re-usable programs

John Edgar 9



John Edgar 10



 At the end of this course you should, for each 
of the data structures we cover, be able to

▪ Describe the operations

▪ Explain common implementations

▪ Implement in a programming language (C++)

▪ Compare with other data structures

▪ Recommend which data structure to use for a 
given problem

John Edgar 11



 At the end of this course you should, for each 
of the algorithms we cover, be able to

▪ Implement in a programming language (C++)

▪ Analyze running time and space requirements

▪ Compare with other algorithms of a similar nature

John Edgar 12



 At the end of this course you should be able to

▪ Write algorithms using recursion

▪ Understand the advantages of disadvantages of using 
recursive algorithms

▪ Implement data structures using both arrays and 
reference structures as the underlying structure

▪ Compare array and reference structure 
implementations

▪ Use features of the C++ language to write well-
structured programs

John Edgar 13



 At the end of this course you should be able 
to

▪ Understand and describe the mathematical basis 
of O notation

▪ Compute the O notation running time of 
algorithms

▪ Understand the limitations of O notation

John Edgar 14



 Develop problem solving techniques

▪ To take a problem statement

▪ And develop a computer program to solve the 
problem

 A solution consists of two components

▪ Algorithms

▪ Data storage

John Edgar 15



 Problem solving

▪ Use abstraction to design solutions

▪ Design modular programs

▪ Use recursion as a problem-solving strategy

 Provide tools for the management of data

▪ Identify abstract data types (ADTs)

▪ Examine applications that use the ADTs

▪ Construct implementations of the ADTs

John Edgar 16



 A good solution is cost effective

▪ We should minimize the cost of the software

 Running costs

▪ Resources (computing time and memory)

▪ Interaction costs (e.g. poor GUI may result in the loss of 
business)

▪ Costs related to errors (e.g. loss of customer information, 
storing incorrect data, etc.)

 Development and maintenance costs

▪ i.e. costs related to the software life cycle

John Edgar 17



 Well structured

▪ Modular

▪ Modifiable

▪ Written with good style 

 Well documented
 Easy to use
 Efficient
 Able to degrade gracefully (fail-safe)
 Debugged

John Edgar 18


