
Inheritance and object 
compatibility

� Object type compatibility
� An instance of a subclass can be used instead of an 

instance of the superclass, but not the other way around

� Examples:
� reference/pointer can hold an object of a subclass
� subclass can be passed to an function requiring superclass

reference/pointer



Inheritance: is-a Relationships

� Inheritance should only be used when an is-a
relationship exists between the base and the 
derived class e.g.
� A Ball is a Sphere, so a Ball class could be derived from a 

Sphere class, however
� A Color is not a Ball (!!) so a Color class should not be 

derived from a Ball class (or vice versa)

� In programming terms a derived class should be 
type-compatible with all of its ancestor classes
� That is, an instance of a derived class can be used instead 

of an instance of the base class



When to use inheritance?

� An important principle in software design for writing 
code that is easy to maintain and re-use is
the Open-Closed principle:
� Software entities like classes, modules and functions 

should be open for extension but closed for modifications
� In terms of classes, this means that creating a subclass 

should not necessitate changing the superclass

� Any subclass should comply with the (Liskov) 
Substitution Principle otherwise it may violate the 
Open-Closed Principle
� Reference: 

http://www.objectmentor.com/resources/articles/lsp.pdf



(Liskov) Substitution Principle

� “The supertype’s behavior must be 
supported by the subtypes: subtype objects 
can be substituted for supertype objects 
without affecting the behavior of the using 
code.”

� i.e., functions that use pointers/references to 
base class objects must be able to use 
objects of derived classes without knowing it.

� Example: Rectangle and Square classes



When to use inheritance?

� The key is that an is-a relationship should apply to 
the behavior of objects, not to the real-world entities 
that the objects are modeling
� A square is a rectangle but
� The behavior of a Square object is not consistent with the 

behavior of a Rectangle object!

� The test, therefore, is that a subclass’ public 
behavior should conform to the expected behavior 
of its base class
� This is important because a client program may depend (or 

expect) that this conformity exists



Polymorphism

� Polymorphism means many forms
� A Subclass definition can include a redefinition of a 

superclass method
� The subclass method then overrides the superclass

method
� If the calling object is a subclass object, the subclass’

version of the method is used
� This is useful if the subclass is required to perform the 

same action but in a different way

� Note that overriding is not the same as overloading
� An overloaded method is one where there is another 

method with the same name, but a different parameter 
list



Dynamic Binding

� The correct version of an overridden method is 
decided at execution time, not at compilation time, 
based on the type to which a pointer refers
� This is known as dynamic binding or late binding

� This allows a superclass reference to be used to 
refer to a subclass object while still eliciting the 
appropriate behavior
� which method is chosen is based on the object type rather 

than the pointer/reference type
� this allows the old code (code of the superclass) to call new 

code (code of the subclass)!



Java and Dynamic Binding

� In Java, all object variables are references to 
objects and all methods have dynamic binding

� A base class reference variable that refers to a 
subclass object will use the subclass methods
� But does not have access to subclass methods that do not 

exist in the base class

� Containers that store a base class can be used to 
store subclass objects
� When retrieving objects from such a container the subclass 

specific methods can be accessed by first casting the 
object to a subclass reference

� Note that all Java classes are subclasses of Object



C++ and Dynamic Binding

� Unlike Java, C++ object variables are not references/pointers 
unless explicitly declared so, therefore a C++ object variable 
uses static memory 

� Dynamic binding can happen only for pointers and references to 
objects (which method to call will be decided base on the type of 
object not on type of pointer or reference).

� However, dynamic binding is not automatically used as in Java!
� Unless the method is declared virtual the static binding is 

used (i.e., depends on type of pointer or reference)


