
The Substitution method
T(n)  = 2T(n/2) + cn
� Guess : T(n) = O(n log n)
� Proof by Mathematical Induction: 

Prove that   T(n) ≤ d n log n   for d>0
T(n) ≤ 2(d⋅ n/2⋅ log n/2) + cn
(where T(n/2) ≤ d⋅n/2 (log n/2)   by induction hypothesis)

≤ dn log n/2 + cn
= dn log n – dn + cn
= dn log n + (c-d)n
≤ dn log n if d≥ c

� Therefore, T(n) = O(n log n)



Quick Sort – Partitioning –
algorithm
public int partition(Comparable[] arr, int low, int high) {

Comparable pivot = arr[high]; // choose pivot
int l = low;
int r = high-1;
while (l<=r) { 
// find bigger item on the left
while (l<=r && arr[l].compareTo(pivot) <= 0)
l++;

// find smaller item on the right
while (l<=r && arr[r].compareTo(pivot) >= 0)
r--;

if (l<r) {
swap(arr[l], arr[r]);
l++;
r--;

}
}
// put pivot to the correct location
swap(arr[l], arr[high]); 
return r;

}



Quick Sort – Partitioning –
algorithm – Proof of correctness

� Loop invariant:

at the beginning/end of each loop:
1. arr[low]..arr[l-1] contains elements <= pivot
2. arr[r+1]..arr[high-1] contains elements >= pivot

� When the loop is finished we have l=r+1, i.e.,
1. arr[low]..arr[r] are <= pivot
2. arr[r+1]..arr[high-1] are >= pivot
3. arr[high]=pivot

� By swapping arr[high] with arr[l] (or arr[r]) we get a 
proper partitioning.



Quick Sort – Partitioning –
another algorithm (textbook)

� Pivot is chosen to be the first element of the array (does 
not really matter)

� The array is divided to 4 parts (see bellow), initially “<p”
and “≥p” parts are empty

� Invariant for the partition algorithm:
The items in region S1 are all less than the pivot, and those in 
S2 are all greater than or equal to the pivot

� In each step the first element in “?” part is added either to 
“<p” or “≥p” part.



Initial state of the array

S1: arr[first+1]..arr[lastS1] ⇒ empty
S2: arr[lastS1+1]..arr[firstUnknown-1]  ⇒ empty
?:   arr[firstUnknown]..arr[last]    ⇒ all elements but pivot

Quick Sort – Partitioning –
another algorithm (textbook)



Processing arr[firstUnknown] : case “< pivot”
Move arr[firstUnknown] into S1 by swapping it with theArray[lastS1+1] and by 
incrementing both lastS1 and firstUnknown.

Quick Sort – Partitioning –
another algorithm (textbook)



Processing arr[firstUnknown] : case “≥ pivot”

Moving theArray[firstUnknown] into S2 by incrementing firstUnknown.

Quick Sort – Partitioning –
another algorithm (textbook)



Quick Sort – Partitioning –
another algorithm (textbook)
public int partition(Comparable[] arr, int first, int last) {

Comparable pivot = arr[first]; // choose pivot

// initially everything but pivot is unknown
int lastS1 = first;
for (int firstUnknown = first+1; firstUnknown <= last;

firstUnknown++) {
if (arr[firstUnknown].compareTo(pivot) < 0) {
// item should be moved to S1
lastS1++;
swap(arr[lastS1],arr[firstUnknown]);

}
// else item should be moved to S2, 
// which will be increamenting firstUnknown in the loop

}
// put pivot to the correct location
swap(arr[first], arr[lastS1]); 
return lastS1;

}



Quick Sort – Selection of pivot

� In the above algorithm we selected the pivot to be 
the last or the first element of subarray which we 
want to partition

� It turns out that the selection of pivot is crucial for 
performance of Quick Sort – see best and worst 
cases

� Other strategies used:
� select 3 (or more elements) and pick the median
� randomly select (especially used when the arrays might be 

originally sorted)
� select an element “close to the median” in the subarray

(there is a recursive linear time algorithm for that, see 
http://en.wikipedia.org/wiki/Selection_algorithm for details).



Analysis of Quick Sort:
Best  Case
� How much time do we need to partition an 

array of size n?
� O(n) using any of two algorithms
� Best case: Suppose each partition 

operation divides the array almost exactly 
in half



Best case Partitioning at various 
levels



Analysis of Quick Sort:
Best  Case
� How much time do we need to partition an 

array of size n?
� O(n) using any of two algorithms
� Best case: Suppose each partition 

operation divides the array almost exactly 
in half

� When could the best case happen?
� For example, array was sorted and the 

pivot is selected to be the middle element 
of the subarray.



Analysis of Quick Sort:
Best  Case
� Best case: Suppose each partition 

operation divides the array almost exactly 
in half

� The running time (time cost) can be 
expressed with the following recurrence:

T(n) = 2.T(n/2) + 
T(partitioning array of size n)

= 2.T(n/2) + O(n)
� The same recurrence as for merge sort, 

i.e., T(n) is of order O(n.log n).



� In the worst case, partitioning always divides 
the size n array into these three parts:
� A length one part, containing the pivot itself
� A length zero part, and

� A length n-1 part, containing everything 
else

Analysis of Quick Sort:
Worst  Case



Worst case partitioning



� In the worst case, partitioning always divides 
the size n array into these three parts:
� A length one part, containing the pivot itself
� A length zero part, and
� A length n-1 part, containing everything 

else
� When could this happen?
� Example: the array is sorted and the pivot is 

selected to be the first or the last element.

Analysis of Quick Sort:
Worst  Case



� The recurrent formula for the time cost of Quick Sort 
in the worst case:
T(n) = T(0) + T(n-1) + O(n)

= T(n-1) + O(n)

� By repeated substitution (or Master’s theorem) we 
get the running time of Quick Sort in the worst case 
is O(n2)

� Similar, situation as for Insertion Sort. Does it mean 
that the performance of Quick Sort is bad on 
average?

Analysis of Quick Sort:
Worst  Case



� If the array is sorted to begin with, Quick sort 
running time is terrible: O(n2)
(Remark: could be improved by random 
selection of pivot.)

� It is possible to construct other bad cases
� However, Quick sort runs usually (on average) 

in time O(n.log2n)  
-> CMPT307 for detailed analysis

� The constant in front of n.log2n is so good that 
Quick sort is generally the fastest algorithm 
known.

� Most real-world sorting is done by Quick sort.

Quick Sort:
Average  Case



Exercise Problem on Quick 
Sort.

What is the running time of  QUICKSORT when 

a)  All elements of array A have the same 
value ?
b) The array A contains distinct elements 
and in sorted decreasing order ?



Answer – 1 st algorithm

� Pivot is chosen to be the last element in the 
subarray. 
a)  Whatever pivot you choose in each subarray it 
would result in WORST CASE PARTITIONING 
(l=high) and hence the running time is O(n2).
b) Same is the case. Since you always pick the 
minimum element in the subarray as the pivot each 
partition you do would be a worst case partition and 
hence the running time is O(n2) again !



Answer – 2 nd algorithm

� Pivot is chosen to be the first element in the 
subarray
a)  Whatever pivot you choose in each subarray it 
would result in WORST CASE PARTITIONING 
(everything will be put to S2 part) and hence the 
running time is O(n2).
b) Same is the case. Since you always pick the 
maximum element in the sub array as the pivot 
each partition you do would be a worst case 
partition and hence the running time is O(n2) again !



A Comparison of Sorting 
Algorithms

Approximate growth rates of time required for eight sorting algorithms



Finding the k-th Smallest Element 
in an Array (Selection Problem)

� One possible strategy: sort an array and just take 
the k-th element in the array

� This would require O(n.log n) time if use some 
efficient sorting algorithm

� Question: could we use partitioning idea (from 
Quicksort)?



If S1 contains k or more items If S1 contains k or more items --> S1 contains > S1 contains kthkth smallest itemsmallest item
If S1 contains kIf S1 contains k--1 items 1 items --> > kk--thth smallessmalles item is pivot item is pivot pp
If S1 contains fewer then kIf S1 contains fewer then k--1 items 1 items --> S2 contains > S2 contains kthkth smallest itemsmallest item

Finding the k-th Smallest 
Element in an Array
• Assume we have partition the subarray as before.



Finding the k-th Smallest 
Element in an Array
public Comparable select(int k, Comparable[] arr, int low, int high)
// pre: low <= high  and  
//      k <= high-low+1 (number of elements in the subarray)
// return the k-th smallest element 
// of the subarray arr[low..high]
{

int pivotIndex = partition(arr, low, high);
// Note: pivotIndex - low is the local index
//   of pivot in the subarray
if (k == pivotIndex - low + 1) {

// the pivot is the k-th element of the subarray
return arr[pivotIndex];

} else if (k < pivotIndex - low + 1) {
// the k-th element must be in S1 partition
return select(k, arr, low, pivotIndex-1);

} else { // k > pivotIndex - low +1
// the k-th element must be in S2 partition
// Note: there are pivotIndex-first elements in S1
//       and one pivot, i.e., all smaller than
//       elements in S2, so we have to recalculate
//       index k
return select(k - (pivotIndex-first+1), arr, pivotIndex+1, high);

}
} // end kSmall



Finding the k-th Smallest Item 
in an Array

� The running time in the best case:
T(n) = T(n/2) + O(n)

� It can be shown with repeated substitution that T(n) is of order 
O(n)

� The running time in the worst case:
T(n) = T(n-1) + O(n)

� This gives the time O(n2)

� average case: O(n)
� By selecting the pivot close to median (using a recursive 

linear time algorithm), we can achieve O(n) time in the worst 
case as well.


