The Substitution method

T(n) = 2T(n/2) + cn

- **Guess**: $T(n) = O(n \log n)$
- **Proof** by <u>Mathematical Induction</u>:

Prove that $T(n) \le d n \log n$ for d > 0 $T(n) \le 2(d \cdot n/2 \cdot \log n/2) + cn$ (where $T(n/2) \le d \cdot n/2$ (log n/2) by induction hypothesis) $\le dn \log n/2 + cn$ $= dn \log n - dn + cn$ $= dn \log n + (c \cdot d)n$ $\le dn \log n$ if $d \ge c$

• Therefore, *T*(*n*) = *O*(*n log n*)

Quick Sort – Partitioning – algorithm

```
public int partition(Comparable[] arr, int low, int high) {
   Comparable pivot = arr[high]; // choose pivot
   int 1 = 1 \circ w_i
   int r = high-1;
   while (l<=r) {</pre>
   // find bigger item on the left
     while (l<=r && arr[l].compareTo(pivot) <= 0)</pre>
     1++;
     // find smaller item on the right
     while (l<=r && arr[r].compareTo(pivot) >= 0)
     r--;
     if (l<r) {
        swap(arr[1], arr[r]);
        l++;
        r--;
    }
   // put pivot to the correct location
   swap(arr[1], arr[high]);
   return r;
```


Quick Sort – Partitioning – algorithm – Proof of correctness

• Loop invariant:

at the beginning/end of each loop:

- 1. arr[low]..arr[l-1] contains elements <= pivot
- 2. arr[r+1]..arr[high-1] contains elements >= pivot
- When the loop is finished we have I=r+1, i.e.,
 - 1. arr[low]..arr[r] are <= pivot</pre>
 - 2. arr[r+1]..arr[high-1] are >= pivot
 - 3. arr[high]=pivot
- By swapping arr[high] with arr[l] (or arr[r]) we get a proper partitioning.

Quick Sort – Partitioning – another algorithm (textbook)

- Pivot is chosen to be the first element of the array (does not really matter)
- The array is divided to 4 parts (see bellow), initially "<p" and "≥p" parts are empty
- Invariant for the partition algorithm:
 - The items in region S_1 are all less than the pivot, and those in S_2 are all greater than or equal to the pivot
- In each step the first element in "?" part is added either to "<p" or "≥p" part.

Quick Sort – Partitioning – another algorithm (textbook)

S₁: arr[first+1]..arr[lastS1] S₂: arr[lastS1+1]..arr[firstUnknown-1]

?: arr[firstUnknown]..arr[last]

- \Rightarrow empty
- \Rightarrow empty
- \Rightarrow all elements but pivot

Initial state of the array

Processing arr[firstUnknown]: case "< pivot"

Move *arr[firstUnknown]* into S_1 by swapping it with *theArray[lastS1+1]* and by incrementing both *lastS1* and *firstUnknown*.

Quick Sort – Partitioning – another algorithm (textbook)

Processing arr[firstUnknown]: case ">> pivot"

Moving *theArray[firstUnknown]* into S₂ by incrementing *firstUnknown*.

Quick Sort – Partitioning – another algorithm (textbook)

```
public int partition(Comparable[] arr, int first, int last) {
   Comparable pivot = arr[first]; // choose pivot
```

```
// initially everything but pivot is unknown
int lastS1 = first;
for (int firstUnknown = first+1; firstUnknown <= last;
    firstUnknown++) {
    if (arr[firstUnknown].compareTo(pivot) < 0) {
      // item should be moved to S1
      lastS1++;
      swap(arr[lastS1],arr[firstUnknown]);
    }
    // else item should be moved to S2,
    // which will be increamenting firstUnknown in the loop
}
// put pivot to the correct location
swap(arr[first], arr[lastS1]);
return lastS1;</pre>
```


Quick Sort – Selection of pivot

- In the above algorithm we selected the pivot to be the last or the first element of subarray which we want to partition
- It turns out that the selection of pivot is crucial for performance of Quick Sort – see best and worst cases
- Other strategies used:
 - select 3 (or more elements) and pick the median
 - randomly select (especially used when the arrays might be originally sorted)
 - select an element "close to the median" in the subarray (there is a recursive linear time algorithm for that, see <u>http://en.wikipedia.org/wiki/Selection_algorithm</u> for details).

Analysis of Quick Sort: Best Case

- How much time do we need to partition an array of size n?
- O(n) using any of two algorithms
- Best case: Suppose each partition operation divides the array almost exactly in half

Best case Partitioning at various levels

Analysis of Quick Sort: Best Case

- How much time do we need to partition an array of size n?
- O(n) using any of two algorithms
- Best case: Suppose each partition operation divides the array almost exactly in half
- When could the best case happen?
- For example, array was sorted and the pivot is selected to be the middle element of the subarray.

Analysis of Quick Sort: Best Case

- Best case: Suppose each partition operation divides the array almost exactly in half
- The running time (time cost) can be expressed with the following recurrence:

$$T(n) = 2.T(n/2) +$$

T(partitioning array of size n)
= 2.T(n/2) + O(n)

The same recurrence as for merge sort,
 i.e., T(n) is of order O(n.log n).

Analysis of Quick Sort: Worst Case

- In the worst case, partitioning always divides the size n array into these three parts:
 - A length one part, containing the pivot itself
 - A length zero part, and
 - A length n-1 part, containing everything else

Worst case partitioning

Analysis of Quick Sort: Worst Case

- In the worst case, partitioning always divides the size n array into these three parts:
 - A length one part, containing the pivot itself
 - A length zero part, and
 - A length n-1 part, containing everything else
- When could this happen?
- Example: the array is sorted and the pivot is selected to be the first or the last element.

Analysis of Quick Sort: Worst Case

- The recurrent formula for the time cost of Quick Sort in the worst case: T(n) = T(0) + T(n-1) + O(n) = T(n-1) + O(n)
- By repeated substitution (or Master's theorem) we get the running time of Quick Sort in the worst case is O(n²)
- Similar, situation as for Insertion Sort. Does it mean that the performance of Quick Sort is bad on average?

Quick Sort: Average Case

- If the array is sorted to begin with, Quick sort running time is terrible: O(n²)
 (Remark: could be improved by random selection of pivot.)
- It is possible to construct other bad cases
- However, Quick sort runs usually (on average) in time O(n.log₂n)
 CMPT307 for detailed analysis
 - -> CMPT307 for detailed analysis
- The constant in front of n.log₂n is so good that Quick sort is generally the fastest algorithm known.
- Most real-world sorting is done by Quick sort.

Exercise Problem on Quick Sort.

What is the running time of QUICKSORT when

a) All elements of array A have the same value ?

b) The array A contains distinct elements and in sorted decreasing order ?

Answer – 1st algorithm

Pivot is chosen to be the last element in the subarray.

a) Whatever **pivot** you choose in each subarray it would result in WORST CASE PARTITIONING (*I=high*) and hence the running time is $O(n^2)$.

b) Same is the case. Since you always pick the minimum element in the subarray as the **pivot** each partition you do would be a worst case partition and hence the running time is $O(n^2)$ again !

Answer – 2nd algorithm

 Pivot is chosen to be the first element in the subarray

a) Whatever **pivot** you choose in each subarray it would result in WORST CASE PARTITIONING (everything will be put to S_2 part) and hence the running time is O(n²).

b) Same is the case. Since you always pick the maximum element in the sub array as the **pivot** each partition you do would be a worst case partition and hence the running time is O(n²) again !

A Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort	n ²	n ²
Bubble sort	n ²	n ²
Insertion sort	n ²	n ²
Mergesort	n * log n	n * log n
Quicksort	n ²	n * log n
Radix sort	n	n
Treesort	n ²	n * log n
Heapsort	n * log n	n * log n

Approximate growth rates of time required for eight sorting algorithms

Finding the k-th Smallest Element in an Array (Selection Problem)

- One possible strategy: sort an array and just take the k-th element in the array
- This would require O(n.log n) time if use some efficient sorting algorithm
- Question: could we use partitioning idea (from Quicksort)?

Finding the k-th Smallest Element in an Array

• Assume we have partition the subarray as before.

If S1 contains k or more items -> S1 contains kth smallest item

- If S1 contains k-1 items -> k-th smalles item is pivot p
- If S1 contains fewer then k-1 items -> S2 contains kth smallest item

Finding the k-th Smallest Element in an Array

```
public Comparable select(int k, Comparable[] arr, int low, int high)
// pre: low <= high and</pre>
  k \le high-low+1 (number of elements in the subarray)
11
// return the k-th smallest element
// of the subarray arr[low..high]
   int pivotIndex = partition(arr, low, high);
   // Note: pivotIndex - low is the local index
   // of pivot in the subarray
   if (k == pivotIndex - low + 1) {
         // the pivot is the k-th element of the subarray
         return arr[pivotIndex];
   } else if (k < pivotIndex - low + 1) {</pre>
         // the k-th element must be in S1 partition
         return select(k, arr, low, pivotIndex-1);
   } else { // k > pivotIndex - low +1
         // the k-th element must be in S2 partition
         // Note: there are pivotIndex-first elements in S1
                  and one pivot, i.e., all smaller than
         11
                 elements in S2, so we have to recalculate
         11
                  index k
         11
         return select(k - (pivotIndex-first+1), arr, pivotIndex+1, high);
 // end kSmall
```


Finding the k-th Smallest Item in an Array

- The running time in the best case:
 T(n) = T(n/2) + O(n)
- It can be shown with repeated substitution that T(n) is of order O(n)
- The running time in the worst case:
 T(n) = T(n-1) + O(n)
- This gives the time O(n²)
- average case: O(n)
- By selecting the pivot close to median (using a recursive linear time algorithm), we can achieve O(n) time in the worst case as well.