
Growth-rate Functions
� O(1) – constant time, the time is independent of n, 

e.g. array look-up
� O(log n) – logarithmic time, usually the log is base 

2, e.g. binary search
� O(n) – linear time, e.g. linear search
� O(n*log n) – e.g. efficient sorting algorithms
� O(n2) – quadratic time, e.g. selection sort
� O(nk) – polynomial (where k is some constant)

� O(2n) – exponential time, very slow!

� Order of growth of some common functions
O(1) < O(log n) < O(n) < O(n * log n) < O(n2) < O(n3) < O(2n)



Order-of-Magnitude Analysis 
and Big O Notation

A comparison of growth-rate functions: a) in tabular form



Order-of-Magnitude Analysis 
and Big O Notation

A comparison of growth-rate functions: b) in graphical form



Note on Constant Time

� We write O(1) to indicate something that takes a 
constant amount of time
� E.g. finding the minimum element of an ordered array 

takes O(1) time, because the min is either at the 
beginning or the end of the array

� Important: constants can be huge, and so in practice 
O(1) is not necessarily efficient --- all it tells us is that the 
algorithm will run at the same speed no matter the size 
of the input we give it



Arithmetic of Big-O Notation

1) If f(n) is O(g(n)) then c.f(n) is O(g(n)), where 
c is a constant. 

� Example:  23*log n is O(log n)

2) If f1(n) is O(g(n)) and f2(n) is O(g(n)) then 
also f1(n)+f2(n) is O(g(n))

� Example: what is order of n2+n?
n2 is O(n2)
n is O(n) but also O(n2)
therefore n2+n is O(n2)



Arithmetic of Big-O Notation

3) If f1(n) is O(g1(n)) and f2(n) is O(g2(n)) then 
f1(n)*f2(n) is O(g1(n)*g2(n)). 

� Example:  what is order of (3n+1)*(2n+log n)?
3n+1 is O(n)
2n+log n is O(n)
(3n+1)*(2n+log n) is O(n*n)=O(n2)



Using Big O Notation 

� It’s not correct to say:
f(n) � O(g(n)), 
f(n) = O(g(n))

� It’s completely wrong to say:
f(n) ≥ O(g(n))
f(n) > O(g(n))

� Just use:
f(n) is (in) O(g(n)), or
f(n) is of order O(g(n)), or
f(n) ∈ O(g(n))



Using Big O Notation 
� Sometimes we need to be more specific when 

comparing the algorithms.
� For instance, there might be several sorting 

algorithms with time of order O(n.log n). However, 
an algorithm with cost function 
2n.log n + 10n + 7log n + 40 
is better than one with cost function
5n.log n + 2n +10log n +1

� That means:
� We care about the constant of the main term.
� But we still don’t care about other terms.

� In such situations, the following notation is often 
used:
2n.log n + O(n) for the first algorithm
5n.log n + O(n) for the second one



Searching costs using 
O-notation
� Linear search

� Best case: O(1)
� Average case: O(n)
� Worst case: O(n)

� Binary search
� Best case: O(1)
� Average case: O(log n)
� Worst case: O(log n)



Sorting cost in O-notation

� Selection sort
� Best case: O(n2) (can vary with implementation)
� Average case: O(n2)
� Worst case: O(n2)

� Insertion sort
� Best case: O(n) (can vary with implementation)
� Average case: O(n2)
� Worst case: O(n2)


