Growth-rate Functions

O(1) — constant time, the time is independent of
e.g. array look-up

O(log n) — logarithmic time, usually the log is base
2, e.g. binary search

O(n) — linear time, e.g. linear search
O(n*log n) — e.q. efficient sorting algorithms
O(n?) — quadratic time, e.g. selection sort
O(nX) — polynomial (where k is some constant)
O(2") — exponential time, very slow!

>

Order of growth of some common functions
O(1) < O(log n) < O(n) < O(n * log n) < O(n?) < O(n3) < O(2M)



Order-of-Magnitude Analysis

and Big O Notation

(@)

n

- 8 \
Function | 10 100 1,000 10,000 100,000 1,000,000
i i i i i i
l0gan 35 6 9 13 16 19
n 10 102 108 10 10 106
n«logn | 30 664 9965 105 106 107
n? 102 104 105 108 100 1077
n 10° 105 109 102 10° 107
n ’|O3 1030 10301 103,010 1030,103 10301,030

A comparison of growth-rate functions: a) in tabular form



Order-of-Magnitude Analysis
and Big O Notation

100 - 2" n3 n 2

n *log,n

75

50 A

Value of growth-rate function

log,n

T T T T
5 10 15 20
n

A comparison of growth-rate functions: b) in graphical form



Note on Constant Time

e \We write O(1) to indicate something that takes a
constant amount of time

e E.g. finding the minimum element of an ordered array
takes O(1) time, because the min is either at the
beginning or the end of the array

e Important: constants can be huge, and so in practice
O(1) is not necessarily efficient --- all it tells us is that the
algorithm will run at the same speed no matter the size
of the input we give it



Arithmetic of Big-O Notation

1) If f(n) 1s O(g(n)) then c.f(n) is O(g(n)), where
C IS a constant.
e Example: 23*log nis O(log n)

2) Iff,(n)1s O(g(n)) and f,(n) is O(g(n)) then
also f,(n)+f,(n) is O(g(n))
e Example: what is order of n>+n?
nZis O(n?)
n is O(n) but also O(n?)
therefore n?+n is O(n?)



Arithmetic of Big-O Notation

3) Iff,(n)1s O(g,(n)) and f,(n) is O(g,(n)) then
f,(n)*ty(n) I1s O(g,(n)*g,(Nn)).

e Example: what is order of (3n+1)*(2n+log n)?
3n+1is O(n)
2n+log nis O(n)
(3n+1)*(2n+log n) is O(n*n)=0(n?)



Using Big O Notation

e It's not correct to say:
f(n) < O(g(n)),
f(n) = O(g(n))

e |t's completely wrong to say:

f(n) > O(g(n))
f(n) > O(g(n))
e Just use:

f(n) 1s (in) O(g(n)), or
f(n) is of order O(g(n)), or

i(n) € O(g(n))




Using Big O Notation

Sometimes we need to be more specific when
comparing the algorithms.

For instance, there might be several sorting
algorithms with time of order O(n.log n). However,
an algorithm with cost function

2n.logn + 10n + 7log n + 40

IS better than one with cost function

5n.log n + 2n +10log n +1

That means:

e We care about the constant of the main term.
e But we still don’t care about other terms.

In such situations, the following notation is often
used:

2n.log n + O(n) for the first algorithm

5n.log n + O(n) for the second one



Searching costs using
O-notation

e Linear search
e Bestcase: O(1)
e Average case: O(n)
e Worst case: O(n)

e Binary search
e Bestcase: O(1)
e Average case: O(log n)
e Worst case: O(log n)




Sorting cost in O-notation

e Selection sort
e Best case: O(n?) (can vary with implementation)
e Average case: O(n?)
e Worst case: O(n?)

e Insertion sort
e Best case: O(n) (can vary with implementation)

e Average case: O(n?)
e Worst case: O(n?)



