
Insertion Sort

� while some elements unsorted:
� Using linear search, find the location in the sorted portion 

where the 1st element of the unsorted portion should be 
inserted 

� Move all the elements after the insertion location up one 
position to make space for the new element
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the fourth iteration of this loop is shown here



An insertion sort partitions the array into two regions



An insertion sort of an array of five integers



Insertion Sort Algorithm
public void insertionSort( Comparable [] arr) {

for ( int i = 1; i < arr.length; ++i) {
Comparable temp = arr[i];
int pos = i;
// Shuffle up all sorted items > arr[i]
while (pos > 0 && 

arr[pos-1].compareTo(temp) > 0) {
arr[pos] = arr[pos–1];
pos--;

} // end while
// Insert the current item
arr[pos] = temp;

}
}



public void insertionSort( Comparable [] arr) {
for ( int i = 1; i < arr.length; ++i) {
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Insertion Sort Analysis
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Insertion Sort: Number of 
Comparisons
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Remark: we only count comparisons of elements in the array.



Insertion Sort:  Cost Function
� 1 operation to initialize the outer loop
� The outer loop is evaluated n-1 times

� 5 instructions (including outer loop comparison and increment)
� Total cost of the outer loop: 5(n-1)

� How many times the inner loop is evaluated is affected by the 
state of the array to be sorted

� Best case: the array is already completely sorted so no “shifting”
of array elements is required.
� We only test the condition of the inner loop once (2 operations = 1 

comparison + 1 element comparison), and the body is never 
executed

� Requires 2(n-1) operations.



Insertion Sort:  Cost Function
� Worst case: the array is sorted in reverse order (so each item 

has to be moved to the front of the array)
� In the i-th iteration of the outer loop, the inner loop will perform 4i+1

operations
� Therefore, the total cost of the inner loop will be 2n(n-1)+n-1

� Time cost:
� Best case: 7(n-1)
� Worst case: 5(n-1)+2n(n-1)+n-1

� What about the number of moves?
� Best case: 2(n-1) moves
� Worst case: 2(n-1)+n(n-1)/2



Insertion Sort: Average Case

� Is it closer to the best case (n comparisons)?
� The worst case (n * (n-1) / 2) comparisons?
� It turns out that when random data is sorted, insertion sort is 

usually closer to the worst case
� Around n * (n-1) / 4 comparisons
� Calculating the average number of comparisons more exactly would

require us to state assumptions about what the “average” input data 
set looked like

� This would, for example, necessitate discussion of how items were 
distributed over the array

� Exact calculation of the number of operations required to perform 
even simple algorithms can be challenging
(for instance, assume that each initial order of elements has the 
same probability to occur)



Bubble Sort 

� Simplest sorting algorithm
� Idea: 

� 1. Set flag = false
� 2. Traverse the array and compare pairs of two 

consecutive elements 
� 1.1 If  E1 ≤ E2  -> OK (do nothing)
� 1.2 If  E1 > E2  then Swap(E1, E2)  and set flag = true

� 3. repeat 1. and 2. while flag=true.



Bubble Sort
1 1   23   2   56    9     8    10    100
2 1   2    23   56    9 8    10     100
3 1   2    23    9    56   8 10     100
4 1   2    23    9    8    56   10 100
5 1   2    23    9    8    10   56     100
---- finish the first traversal  ----
1 1   2    23    9 8    10   56     100
2 1   2    9     23   8 10   56     100
3 1   2    9      8    23  10 56     100
4 1   2    9      8    10   23  56     100
---- finish the second traversal ----

…



Bubble Sort
public void bubbleSort (Comparable[] arr) {

boolean isSorted = false ;
while (!isSorted) {
isSorted = true ;
for (i = 0; i<arr.length-1; i++)

if (arr[i].compareTo(arr[i+1]) > 0) {
Comparable tmp = arr[i];
arr[i] = arr[i+1];
arr[i+1] = tmp;
isSorted = false ;

}
}

}



Bubble Sort: analysis

� After the first traversal (iteration of the main 
loop) – the maximum element is moved to its 
place (the end of array)

� After the i-th traversal – largest i elements are 
in their places

� Time cost, number of comparisons, number 
of moves -> Assignment 4



O Notation



O-notation Introduction

� Exact counting of operations is often difficult (and 
tedious), even for simple algorithms

� Often, exact counts are not useful due to other 
factors, e.g. the language/machine used, or the 
implementation of the algorithm (different types of 
operations do not take the same time anyway)

� O-notation is a mathematical language for 
evaluating the running-time (and memory usage) of 
algorithms



Growth Rate of an Algorithm

� We often want to compare the performance of 
algorithms 

� When doing so we generally want to know how they 
perform when the problem size (n) is large

� Since cost functions are complex, and may be 
difficult to compute, we approximate them using O 
notation



Example of a Cost Function

� Cost Function: tA(n) = n2 + 20n + 100
� Which term dominates?

� It depends on the size of n
� n = 2, tA(n) = 4 + 40 + 100

� The constant, 100, is the dominating term
� n = 10, tA(n) = 100 + 200 + 100

� 20n is the dominating term
� n = 100, tA(n) = 10,000 + 2,000 + 100

� n2 is the dominating term
� n = 1000, tA(n) = 1,000,000 + 20,000 + 100

� n2 is the dominating term



Big O Notation

� O notation approximates the cost function of an 
algorithm
� The approximation is usually good enough, especially 

when considering the efficiency of algorithm as n gets very 
large

� Allows us to estimate rate of function growth

� Instead of computing the entire cost function we 
only need to count the number of times that an 
algorithm executes its barometer instruction(s)
� The instruction that is executed the most number of times 

in an algorithm (the highest order term)



Big O Notation

� Given functions tA(n) and g(n), we can say that the 
efficiency of an algorithm is of order g(n) if there are 
positive constants c and m such that 
� tA(n) � c.g(n) for all n ≥ m

� we write 
� tA(n) is O(g(n)) and we say that 
� tA(n) is of order g(n)

� e.g. if an algorithm’s running time is 3n + 12 then the 
algorithm is O(n).  If c is 3 and m is 12 then:
� 4 * n ≥ 3n + 12 for all n ≥ 12



In English…
� The cost function of an algorithm A, tA(n), can be approximated 

by another, simpler, function g(n) which is also a function with 
only 1 variable, the data size n.

� The function g(n) is selected such that it represents an upper 
bound on the efficiency of the algorithm A (i.e. an upper bound 
on the value of tA(n)). 

� This is expressed using the big-O notation: O(g(n)).
� For example, if we consider the time efficiency of algorithm A 

then “tA(n) is O(g(n))” would mean that
� A cannot take more “time” than O(g(n)) to execute or that

(more than c.g(n) for some constant c)
� the cost function tA(n) grows at most as fast as g(n)



The general idea is …

� when using Big-O notation, rather than giving a 
precise figure of the cost function using a specific 
data size n

� express the behaviour of the algorithm as its data 
size n grows very large

� so ignore
� lower order terms and
� constants



O Notation Examples

� All these expressions are O(n):
� n, 3n, 61n + 5, 22n – 5, …

� All these expressions are O(n2):
� n2, 9 n2, 18 n2+ 4n – 53, …

� All these expressions are O(n log n):
� n(log n), 5n(log 99n), 18 + (4n – 2)(log (5n + 3)), …


