
CMPT 225

Sorting Algorithms
Algorithm Analysis:

Big O Notation

Objectives

� Determine the running time of simple algorithms in the:
� Best case
� Average case
� Worst case

� Sorting algorithms
� Understand the mathematical basis of O notation
� Use O notation to measure the running time of algorithms

Algorithm Analysis

� It is important to be able to describe the efficiency of algorithms
� Time efficiency
� Space efficiency

� Choosing an appropriate algorithm can make an enormous
difference in the usability of a system e.g.
� Government and corporate databases with many millions of records,

which are accessed frequently
� Online search engines
� Real time systems (from air traffic control systems to computer

games) where near instantaneous response is required

Measuring Efficiency of
Algorithms

� It is possible to time algorithms
� System.currentTimeMillis() returns the current time so

can easily be used to measure the running time of an
algorithm

� More sophisticated timer classes exist

� It is possible to count the number of operations that an
algorithm performs
� Either by a careful visual walkthrough of the algorithm or by
� Printing the number of times that each line executes (profiling)

Timing Algorithms

� It can be very useful to time how long an algorithm takes to run
� In some cases it may be essential to know how long a particular

algorithm takes on a particular system

� However, it is not a good general method for comparing
algorithms
� Running time is affected by numerous factors

� CPU speed, memory, specialized hardware (e.g. graphics card)
� Operating system, system configuration (e.g. virtual memory),

programming language, algorithm implementation
� Other tasks (i.e. what other programs are running), timing of system

tasks (e.g. memory management)

� Particular input used.

Cost Functions
� Because of the sorts of reasons just discussed for general

comparative purposes we will count, rather than time, the number
of operations that an algorithm performs
� Note that this does not mean that actual running time should be

ignored!
� If algorithm (on some particular input) performs t operations, we will

say that it runs in time t.
� Usually running time t depends on the data size (the input length).
� We express the time t as a cost function of the data size n

� We denote the cost function of an algorithm A as tA(), where tA(n) is
the time required to process the data with algorithm A on input of
size n

Best, Average and Worst Case

� The amount of work performed by an algorithm may vary based
on its input (not only on its size)
� This is frequently the case (but not always)

� Algorithm efficiency is often calculated for three, general, cases
of input
� Best case
� Average (or “usual”) case
� Worst case

Cost Functions of
Sorting Algorithms

Simple Sorting

� As an example of algorithm analysis let's look at two
simple sorting algorithms
� Selection Sort and
� Insertion Sort

� We'll calculate an approximate cost function for
these sorting algorithms by analyzing exactly how
many operations are performed by each algorithm
� Note that this will include an analysis of how many times

the algorithms perform loops

Comparing sorting algorithms

� Measures used:
� The total number of operations (usually are not

important)
� The number of comparisons (most common; in

Java comparisons are expansive operation)
� The number of times an element is moved (in

Java moving elements is cheap as references are
always used, but in C++ can be expansive).

Selection Sort

� while some elements unsorted:
� Find the smallest element in the unsorted section; this

requires all of the unsorted items to be compared to find
the smallest

� Swap the smallest element with the first (left-most)
element in the unsorted section

13 21 45 79 47 2260 74 36 66 94 2957 813816 22 45

the fourth iteration of this loop is shown here

smallest so far: 453622

Selection Sort Algorithm
public void selectionSort(Comparable[] arr) {

for (int i = 0; i < arr.length-1; ++i) {
int smallest = i;
// Find the index of the smallest element
for (int j = i + 1; j < arr.length; ++j) {

if (arr[j].compareTo(arr[smallest])<0) {
smallest = j;

}
}
// Swap the smallest with the current item
Comparable temp = arr[i];
arr[i] = arr[smallest];
arr[smallest] = temp;

}
}

A selection sort of an array of five integers (using the algorithm in the textbook,
in which the first part of array is unsorted and the second (bold) is sorted.
Instead of the smallest element we have to look for the biggest element.

Selection Sort: Number of
Comparisons

01

n(n-1)/2

12

23

……

n-2n-1

n-1n

Comparisons to
find min

Elements in
unsorted

Selection Sort Analysis
public void selectionSort(Comparable[] arr) {

for (int i = 0; i < arr.length-1; ++i) {
// outer for loop is evaluated n-1 times

int smallest = i; //n-1 times again
for (int j = i + 1; j < arr.length; ++j) {
// evaluated n(n-1)/2 times

if (arr[j].compareTo(arr[smallest])<0) {
// n(n-1)/2 comparisons
smallest = j; //how many times? (*)

}
}
Comparable temp = arr[i]; //n-1 times
arr[i] = arr[smallest]; //n-1 times
arr[smallest] = temp; //n-1 times

}
}

Selection Sort: Cost Function

� There is 1 operation needed to initializing the outer
loop

� The outer loop is evaluated n-1 times
� 7 instructions (these include the outer loop comparison and

increment, and the initialization of the inner loop)
� Cost is 7(n-1)

� The inner loop is evaluated n(n-1)/2 times
� There are 4 instructions in the inner loop, but one (*) is only

evaluated sometimes
� Worst case cost upper bound: 4(n(n-1)/2)

� Total cost: 1 + 7(n-1) + 4(n(n-1)/2) [worst case]
� Assumption: that all instructions have the same cost

Selection Sort: Summary

� Number of comparisons:
n(n-1)/2

� The best case time cost:
1 + 7(n-1) + 3(n(n-1)/2) (array was sorted)

� The worst case time cost (an upper bound):
�1 + 7(n-1) + 4(n(n-1)/2)
(the real worst case time cost: 1+7(n-1)+3n(n-1)/2+n2/4))

� The number of swaps:
n-1 [number of moves: 3(n-1)]

