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� such that a disk is never put on a smaller disk
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� Move n (4) disks from A to C
� Move n-1 (3) disks from A to B
� Move 1 disk from A to C
� Move n-1 (3) disks from B to C



Figure 2.19a and bFigure 2.19a and b
a) The initial state; b) move n - 1 disks from A to C



Figure 2.19c and dFigure 2.19c and d
c) move one disk from A to B; d) move n - 1 disks from C to B



Hanoi towers

public static void solveTowers(int count, char source, 
char destination, char spare) {

if (count == 1) {
System.out.println("Move top disk from pole " + source +

" to pole " + destination);
} 
else {

solveTowers(count-1, source, spare, destination); // X
solveTowers(1, source, destination, spare);       // Y
solveTowers(count-1, spare, destination, source); // Z

}  // end if
}  // end solveTowers



Recursion tree: 
The order of recursive calls that results from solveTowers(3,A,B,C)
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Figure 2.21aFigure 2.21a
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)
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Figure 2.21bFigure 2.21b
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)
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Figure 2.21cFigure 2.21c
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)
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Figure 2.21dFigure 2.21d
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)
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Figure 2.21eFigure 2.21e
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)



Cost of Hanoi Towers

� How many moves is necessary to solve 
Hanoi Towers problem for N disks?

� moves(1) = 1
� moves(N) = moves(N-1) + moves(1) + moves(N-1)
� i.e.

moves(N) = 2*moves(N-1) + 1

� Guess solution and show it’s correct with 
Mathematical Induction!



Recursive Searching

� Linear Search
� Binary Search

� Find an element in an array, return its 
position (index) if found, or -1 if not found.



Linear Search Algorithm (Java)

public int linSearch(int[] arr, 
int target)

{
for (int i=0; i<arr.size; i++) {

if (target == arr[i]) {
return i; 

} 
} //for
return -1; //target not found

}



Linear Search

� Iterate through an array of n items searching for the 
target item

� The crucial instruction is equality checking (or 
“comparisons” for short)
� x.equals(arr[i]); //for objects or

� x == arr[i]; //for a primitive type

� Linear search performs at most n comparisons
� We can write linear search recursively



Recursive Linear Search 
Algorithm

public int recLinSearch(int[] arr,int low,int x) {
if (low >= arr.length) { // reach the end

return -1;
} else if (x == arr[low]){

return low; 
} else

return recLinSearch(arr, low + 1, x);
}

}

� Base case
� Found the target or
� Reached the end of the array

� Recursive case 
� Call linear search on array from the next item to the end



Binary Search Sketch

� Linear search runs in O(n) (linear) time (it requires n 
comparisons in the worst case)

� If the array to be searched is sorted (from lowest to highest), we 
can do better:

� Check the midpoint of the array to see if it is the item we are 
searching for
� Presumably there is only a 1/n chance that it is!

(assuming that the target is in the array)

� It the value of the item at the midpoint is less than the target then 
the target must be in the upper half of the array
� So perform binary search on that half
� and so on ….



Thinking About Binary Search
� Each sub-problem searches an array slice (or subarray)

� So differs only in the upper and lower array indices that define the 
array slice

� Each sub-problem is smaller than the previous problem
� In the case of binary search, half the size

� The final problem is so small that it is trivial
� Binary search terminates after the problem space consists of one

item or
� When the target item is found

� Be careful when writing the terminating condition
� When exactly do we want to stop?

� When the search space consists of one element but
� Only after that one element has been tested  



Recursive Binary Search 
Algorithm
public int binSearch(

int[] arr, int lower, int upper, int x) 
{

int mid = (lower + upper) / 2;
if (lower > upper) {// empty interval

return - 1; // base case
} else if(arr[mid] == x){

return mid; // second base case
} else if(arr[mid] < x){

return binSearch(arr, mid + 1, upper, x);
} else { // arr[mid] > target

return binSearch(arr, lower, mid - 1, x);
}

}



Analyzing Binary Search

� Best case: 1 comparison
� Worst case: target is not in the array, or is the last item to be 

compared
� Each recursive call halves the input size
� Assume that n = 2k (e.g. if n = 128, k = 7)
� After the first iteration there are n/2 candidates
� After the second iteration there are n/4 (or n/22) candidates

� After the third iteration there are n/8 (or n/23) candidates

� After the k-th iteration there is one candidate because n/2k = 1
� Because n = 2k, k = log2n
� Thus, at most k=log2n recursive calls are made in the worst case!



Binary Search vs Linear 
Search
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Iterative Binary Search

� Use a while loop instead of recursive calls 
� The initial values of lower and upper do not need to be 

passed to the method but
� Can be initialized before entering the loop with lower set 

to 0 and upper to the length of the array-1
� Change the lower and upper indices in each iteration

� Use the (negation of the) base case condition as the 
condition for the loop in the iterative version.
� Return a negative result if the while loop terminates 

without finding the target



Binary Search Algorithm 
(Java)
public int binSearch(int[] arr, int target){

int lower = 0;
int upper = arr.length - 1;

while (lower <= upper){
int mid = (lower + upper) / 2;
if (target == arr[mid]) {

return mid; 
} else if (target > arr[mid]) {

lower = mid + 1;
} else { //target < arr[mid]

upper = mid - 1;
}

} //while
return -1; //target not found

}

Index of the first and last 
elements in the array



Recursion Disadvantage 1

� Recursive algorithms have more overhead than 
similar iterative algorithms
� Because of the repeated method calls (storing and 

removing data from call stack)
� This may also cause a “stack overflow” when the call 

stack gets full

� It is often useful to derive a solution using recursion 
and implement it iteratively
� Sometimes this can be quite challenging!

(Especially, when computation continues after the 
recursive call -> we often need to remember value of 
some local variable -> stacks can be often used to store 
that information.)



Recursion Disadvantage 2

� Some recursive algorithms are inherently inefficient
� An example of this is the recursive Fibonacci 

algorithm which repeats the same calculation again 
and again
� Look at the number of times fib(2) is called

� Even if the solution was determined using recursion 
such algorithms should be implemented iteratively

� To make recursive algorithm efficient:
� Generic method (used in AI): store all results in some data 

structure, and before making the recursive call, check 
whether the problem has been solved.

� Make iterative version.



Function Analysis for call fib(5)
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public static int fib(int n)
if (n == 0 || n == 1)
return n

else
return fib(n-1) + fib(n-2)


