Towers of Hanoi

- Move n (4) disks from pole A to pole C
- such that a disk is never put on a smaller disk

Towers of Hanoi

- Move n (4) disks from pole A to pole C
- such that a disk is never put on a smaller disk

• Move n (4) disks from A to C

- Move n (4) disks from A to C
 - Move n-1 (3) disks from A to B

- Move n (4) disks from A to C
 - Move n-1 (3) disks from A to B
 - Move 1 disk from A to C

- Move n (4) disks from A to C
 - Move n-1 (3) disks from A to B
 - Move 1 disk from A to C
 - Move n-1 (3) disks from B to C

Figure 2.19a and b

a) The initial state; b) move n - 1 disks from A to C

Figure 2.19c and d

c) move one disk from A to B; d) move n - 1 disks from C to B

Hanoi towers

Figure 2.21a Box trace of *solveTowers(3, `A', `B', `C')*

The initial call 1 is made, and **solveTowers** begins execution:

count = 3 source = A dest = B spare = C

At point X, recursive call 2 is made, and the new invocation of the method begins execution:

At point X, recursive call 3 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.

Figure 2.21b Box trace of *solveTowers(3, `A', `B', `C')*

At point Y, recursive call 4 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.

At point Z, recursive call 5 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.

Figure 2.21c Box trace of solveTowers(3, 'A', 'B', 'C')

This invocation completes, the return is made, and the method continues execution.

count	=	3	
source	=	А	
dest	=	В	
spare	=	С	

count	= 2	count
source	= A	source
dest	= C	dest
spare	= B	spare
		L

1 =

= B

= C I

At point Y, recursive call 6 is made, and the new invocation of the method begins execution:

dest

This is the base case, so a disk is moved, the return is made, and the method continues execution.

		_		
count	= 3	3	count =	
source	= A	Ł	source = 2	Aİ
dest	= E	3	dest = 1	вІ
spare	= C	2	spare = 0	2
			· • • • • • • • • • • • • • • • • • • •	_

At point Z, recursive call 7 is made, and the new invocation of the method begins execution:

Figure 2.21d Box trace of *solveTowers(3, `A', `B', `C'*)

At point X, recursive call 8 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.

At point Y, recursive call 9 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.

Figure 2.21e Box trace of *solveTowers(3, `A', `B', `C')*

At point Z, recursive call 10 is made, and the new invocation of the method begins execution:

This is the base case, so a disk is moved, the return is made, and the method continues execution.

This invocation completes, the return is made, and the method continues execution.

count	=	3
source	=	А
dest	=	В
spare	=	С

the return is made, an spare = 2 source = C dest = B spare = A

Cost of Hanoi Towers

- How many moves is necessary to solve Hanoi Towers problem for N disks?
- moves(1) = 1
- moves(N) = moves(N-1) + moves(1) + moves(N-1)

```
    i.e.
    moves(N) = 2*moves(N-1) + 1
```

 Guess solution and show it's correct with Mathematical Induction!

Recursive Searching

- Linear Search
- Binary Search
- Find an element in an array, return its position (index) if found, or -1 if not found.

Linear Search Algorithm (Java)

Linear Search

- Iterate through an array of *n* items searching for the target item
- The crucial instruction is equality checking (or "comparisons" for short)
 - x.equals(arr[i]); //for objects or
 - x == arr[i]; //for a primitive type
- Linear search performs at most *n* comparisons
- We can write linear search recursively

Recursive Linear Search Algorithm

- Base case
 - Found the target or
 - Reached the end of the array
- Recursive case
 - Call linear search on array from the next item to the end

```
public int recLinSearch(int[] arr,int low,int x) {
    if (low >= arr.length) { // reach the end
        return -1;
    } else if (x == arr[low]){
        return low;
    } else
        return recLinSearch(arr, low + 1, x);
    }
}
```


Binary Search Sketch

- Linear search runs in O(n) (linear) time (it requires n comparisons in the worst case)
- If the array to be searched is sorted (from lowest to highest), we can do better:
- Check the midpoint of the array to see if it is the item we are searching for
 - Presumably there is only a 1/n chance that it is! (assuming that the target is in the array)
- It the value of the item at the midpoint is less than the target then the target must be in the upper half of the array
 - So perform binary search on that half
 - and so on

Thinking About Binary Search

- Each sub-problem searches an array slice (or subarray)
 - So differs only in the upper and lower array indices that define the array slice
- Each sub-problem is smaller than the previous problem
 - In the case of binary search, half the size
- The final problem is so small that it is trivial
 - Binary search terminates after the problem space consists of one item or
 - When the target item is found
- Be careful when writing the terminating condition
 - When exactly do we want to stop?
 - When the search space consists of one element but
 - Only after that one element has been tested

Recursive Binary Search Algorithm


```
public int binSearch(
      int[] arr, int lower, int upper, int x)
{
   int mid = (lower + upper) / 2;
   if (lower > upper) {// empty interval
      return - 1; // base case
   } else if(arr[mid] == x){
      return mid; // second base case
   } else if(arr[mid] < x){</pre>
       return binSearch(arr, mid + 1, upper, x);
   } else { // arr[mid] > target
       return binSearch(arr, lower, mid - 1, x);
```

ſ

Analyzing Binary Search

- Best case: 1 comparison
- Worst case: target is not in the array, or is the last item to be compared
 - Each recursive call halves the input size
 - Assume that $n = 2^k$ (e.g. if n = 128, k = 7)
 - After the **first** iteration there are **n/2** candidates
 - After the **second** iteration there are **n/4** (or **n/2**²) candidates
 - After the **third** iteration there are *n***/8** (or *n***/2³) candidates**
 - After the *k*-th iteration there is one candidate because $n/2^{k} = 1$
 - Because $n = 2^k$, $k = \log_2 n$
 - Thus, at most **k=log₂***n* recursive calls are made in the worst case!

Binary Search vs Linear Search

	<u>Linear</u>	<u>Binary</u>
<u>N</u>	<u>N</u>	<u>log₂(N)</u>
10	10	4
100	100	7
1,000	1000	10
10,000	10,000	14
100,000	100,000	17
1,000,000	1,000,000	20
10,000,000	10,000,000	24

Iterative Binary Search

- Use a while loop instead of recursive calls
 - The initial values of lower and upper do not need to be passed to the method but
 - Can be initialized before entering the loop with lower set to 0 and upper to the length of the array-1
 - Change the lower and upper indices in each iteration
- Use the (negation of the) base case condition as the condition for the loop in the iterative version.
 - Return a negative result if the while loop terminates without finding the target

Binary Search Algorithm (Java)

public int binSearch(int[] arr, int target){ Index of the first and last int lower = 0; elements in the array int upper = arr.length - 1; while (lower <= upper){</pre> int mid = (lower + upper) / 2; if (target == arr[mid]) { return mid; } else if (target > arr[mid]) { lower = mid + 1; } else { //target < arr[mid]</pre> upper = mid - 1; } //while return -1; //target not found }

Recursion Disadvantage 1

- Recursive algorithms have more overhead than similar iterative algorithms
 - Because of the repeated method calls (storing and removing data from call stack)
 - This may also cause a "stack overflow" when the call stack gets full
- It is often useful to derive a solution using recursion and implement it iteratively
 - Sometimes this can be quite challenging! (Especially, when computation continues after the recursive call -> we often need to remember value of some local variable -> stacks can be often used to store that information.)

Recursion Disadvantage 2

- Some recursive algorithms are inherently inefficient
- An example of this is the recursive Fibonacci algorithm which repeats the same calculation again and again
 - Look at the number of times fib(2) is called
- Even if the solution was determined using recursion such algorithms should be implemented iteratively
- To make recursive algorithm efficient:
 - Generic method (used in AI): store all results in some data structure, and before making the recursive call, check whether the problem has been solved.
 - Make iterative version.

