
Towers of Hanoi
� Move n (4) disks from pole A to pole C
� such that a disk is never put on a smaller disk

AA BB CC

Towers of Hanoi
� Move n (4) disks from pole A to pole C
� such that a disk is never put on a smaller disk

AA BB CCAA BB CC

AA BB CC

� Move n (4) disks from A to C

AA BB CC

� Move n (4) disks from A to C
� Move n-1 (3) disks from A to B

AA BB CC

� Move n (4) disks from A to C
� Move n-1 (3) disks from A to B
� Move 1 disk from A to C

AA BB CC

� Move n (4) disks from A to C
� Move n-1 (3) disks from A to B
� Move 1 disk from A to C
� Move n-1 (3) disks from B to C

Figure 2.19a and bFigure 2.19a and b
a) The initial state; b) move n - 1 disks from A to C

Figure 2.19c and dFigure 2.19c and d
c) move one disk from A to B; d) move n - 1 disks from C to B

Hanoi towers

public static void solveTowers(int count, char source,
char destination, char spare) {

if (count == 1) {
System.out.println("Move top disk from pole " + source +

" to pole " + destination);
}
else {

solveTowers(count-1, source, spare, destination); // X
solveTowers(1, source, destination, spare); // Y
solveTowers(count-1, spare, destination, source); // Z

} // end if
} // end solveTowers

Recursion tree:
The order of recursive calls that results from solveTowers(3,A,B,C)

AA BB CC

AA BB CC

AA BB CC

Figure 2.21aFigure 2.21a
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC

Figure 2.21bFigure 2.21b
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC

AA BB CC

AA BB CC

AA BB CC

Figure 2.21cFigure 2.21c
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC

AA BB CC

AA BB CC

AA BB CC

Figure 2.21dFigure 2.21d
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

AA BB CC

Figure 2.21eFigure 2.21e
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

Cost of Hanoi Towers

� How many moves is necessary to solve
Hanoi Towers problem for N disks?

� moves(1) = 1
� moves(N) = moves(N-1) + moves(1) + moves(N-1)
� i.e.

moves(N) = 2*moves(N-1) + 1

� Guess solution and show it’s correct with
Mathematical Induction!

Recursive Searching

� Linear Search
� Binary Search

� Find an element in an array, return its
position (index) if found, or -1 if not found.

Linear Search Algorithm (Java)

public int linSearch(int[] arr,
int target)

{
for (int i=0; i<arr.size; i++) {

if (target == arr[i]) {
return i;

}
} //for
return -1; //target not found

}

Linear Search

� Iterate through an array of n items searching for the
target item

� The crucial instruction is equality checking (or
“comparisons” for short)
� x.equals(arr[i]); //for objects or

� x == arr[i]; //for a primitive type

� Linear search performs at most n comparisons
� We can write linear search recursively

Recursive Linear Search
Algorithm

public int recLinSearch(int[] arr,int low,int x) {
if (low >= arr.length) { // reach the end

return -1;
} else if (x == arr[low]){

return low;
} else

return recLinSearch(arr, low + 1, x);
}

}

� Base case
� Found the target or
� Reached the end of the array

� Recursive case
� Call linear search on array from the next item to the end

Binary Search Sketch

� Linear search runs in O(n) (linear) time (it requires n
comparisons in the worst case)

� If the array to be searched is sorted (from lowest to highest), we
can do better:

� Check the midpoint of the array to see if it is the item we are
searching for
� Presumably there is only a 1/n chance that it is!

(assuming that the target is in the array)

� It the value of the item at the midpoint is less than the target then
the target must be in the upper half of the array
� So perform binary search on that half
� and so on ….

Thinking About Binary Search
� Each sub-problem searches an array slice (or subarray)

� So differs only in the upper and lower array indices that define the
array slice

� Each sub-problem is smaller than the previous problem
� In the case of binary search, half the size

� The final problem is so small that it is trivial
� Binary search terminates after the problem space consists of one

item or
� When the target item is found

� Be careful when writing the terminating condition
� When exactly do we want to stop?

� When the search space consists of one element but
� Only after that one element has been tested

Recursive Binary Search
Algorithm
public int binSearch(

int[] arr, int lower, int upper, int x)
{

int mid = (lower + upper) / 2;
if (lower > upper) {// empty interval

return - 1; // base case
} else if(arr[mid] == x){

return mid; // second base case
} else if(arr[mid] < x){

return binSearch(arr, mid + 1, upper, x);
} else { // arr[mid] > target

return binSearch(arr, lower, mid - 1, x);
}

}

Analyzing Binary Search

� Best case: 1 comparison
� Worst case: target is not in the array, or is the last item to be

compared
� Each recursive call halves the input size
� Assume that n = 2k (e.g. if n = 128, k = 7)
� After the first iteration there are n/2 candidates
� After the second iteration there are n/4 (or n/22) candidates

� After the third iteration there are n/8 (or n/23) candidates

� After the k-th iteration there is one candidate because n/2k = 1
� Because n = 2k, k = log2n
� Thus, at most k=log2n recursive calls are made in the worst case!

Binary Search vs Linear
Search

1010001,000

10,000,000

1,000,000

100,000

10,000

100

10

Linear
N

2410,000,000

201,000,000

17100,000

1410,000

7100

410

Binary
log2(N)N

Iterative Binary Search

� Use a while loop instead of recursive calls
� The initial values of lower and upper do not need to be

passed to the method but
� Can be initialized before entering the loop with lower set

to 0 and upper to the length of the array-1
� Change the lower and upper indices in each iteration

� Use the (negation of the) base case condition as the
condition for the loop in the iterative version.
� Return a negative result if the while loop terminates

without finding the target

Binary Search Algorithm
(Java)
public int binSearch(int[] arr, int target){

int lower = 0;
int upper = arr.length - 1;

while (lower <= upper){
int mid = (lower + upper) / 2;
if (target == arr[mid]) {

return mid;
} else if (target > arr[mid]) {

lower = mid + 1;
} else { //target < arr[mid]

upper = mid - 1;
}

} //while
return -1; //target not found

}

Index of the first and last
elements in the array

Recursion Disadvantage 1

� Recursive algorithms have more overhead than
similar iterative algorithms
� Because of the repeated method calls (storing and

removing data from call stack)
� This may also cause a “stack overflow” when the call

stack gets full

� It is often useful to derive a solution using recursion
and implement it iteratively
� Sometimes this can be quite challenging!

(Especially, when computation continues after the
recursive call -> we often need to remember value of
some local variable -> stacks can be often used to store
that information.)

Recursion Disadvantage 2

� Some recursive algorithms are inherently inefficient
� An example of this is the recursive Fibonacci

algorithm which repeats the same calculation again
and again
� Look at the number of times fib(2) is called

� Even if the solution was determined using recursion
such algorithms should be implemented iteratively

� To make recursive algorithm efficient:
� Generic method (used in AI): store all results in some data

structure, and before making the recursive call, check
whether the problem has been solved.

� Make iterative version.

Function Analysis for call fib(5)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(1) fib(0)fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(1)

1

1 1 1

1

0 0

0

1

12 1

3 2

5
public static int fib(int n)
if (n == 0 || n == 1)
return n

else
return fib(n-1) + fib(n-2)

