Towers of Hanol

Move n (4) disks from pole A to pole C
such that a disk is never put on a smaller disk




Towers of Hanol

Move n (4) disks from pole A to pole C
such that a disk is never put on a smaller disk




Move n (4) disks from Ato C




Move n (4) disks from Ato C
Move n-1 (3) disks from Ato B




Move n (4) disks from Ato C
Move n-1 (3) disks from Ato B
Move 1 disk from Ato C




Move n (4) disks from Ato C
Move n-1 (3) disks from Ato B
Move 1 disk from Ato C
Move n-1 (3) disks from B to C




Figure 2.19a and b

a) The initial state; b) move n - 1 disks from Ato C




Figure 2.19c and d

c) move one disk from A to B; d) move n - 1 disks from C to B




Hanol towers

public static void solveTowers(int count, char source,
char destination, char spare) {
I f (count == 1) {
Systemout.println("Mve top disk frompole " + source +
to pole " + destination);

}

el se {
sol veTowers(count -1, source, spare, destination); // X
sol veTowers(1, source, destination, spare); 1Y

sol veTowers(count-1, spare, destination, source); // Z
} /] end if

} /1 end solveTowers



Recursion tree:

The order of recursive calls that results from solveTowers(3,A,B

solveTowers(3,A,B,C)

~—
00000
o000

o0

tb....

v

solveTowers(2,A,C,B)

v

solveTowers(1l,A,B,C)

4

solveTowers(1l,A,C,B)

v

y

solveTowers(1l,A,B,C)

v

solveTowers(2,C,B,A)

|

v

solveTowers(1l,C,A,B)

9

5

solveTowers(1,B,C,A)

solveTowers(l,C,B,A)

Y

10

solveTowers(1l,A,B,C)




00

- 0coeo
Figure 2.21a eoes
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’) ::o

The initial call 1 is made, and solveTowers begins execution:

count
source
dest

spare =

Il
Qwyp w

At point X, recursive call 2 is made, and the new invocation of the method begins execution:

count 3 count 2
source = A X source = A
dest B dest = C
spare = C spare = B

At point X, recursive call 3 is made, and the new invocation of the method begins execution:

count = 3 count = 2 count =1
source = A X source = A X source = A
dest =B dest = C dest B
spare = C spare = B spare = C

This is the base case, so a disk is moved, the return is made, and the method continues execution.

count = 3 count 2 | count = 1}
source = A X source = A | source = A|
dest = B dest = C | dest = B |
spare = C spare = B {spare = C}




Figure 2.21b

Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

At point Y,

recursive call 4 is made, and the new invocation of the method begins execution:

count
source
dest
spare

QW Prpr w

count
source
dest
spare

o
(v e I @ T I V)

r—-——=——7— 1
count = 3 count 2 | count 1
source = A source = A | source = A |
dest B dest =C | dest cl
spare = C spare = B lspare = BJ
At point Z, recursive call 5 is made, and the new invocation of the method begins execution:
count = 3 count = 2 count 1
source = A source = A source = B
dest =B dest =C dest C
spare = C spare = B spare = A

This is the base case, so a disk is moved, the return is made, and the method continues execution.

count
source
dest
spare

QWP w

count
source
dest
spare

I

Il

WwapPN

count i
source = A
dest = C
spare = B

This is the base case, so a disk is moved, the return is made, and the method continues execution.

______ 1
I count = 1|
| source = B
| dest =Cl
I spare = al
Py —— |




Figure 2.21c

Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

This invocation completes, the return

recursive call 6 is made, and the new invocation of the method begins execution:

[————-—
count 3 |count
source = A | source =
dest = B | dest =
spare = C | spare =

L i o i e

At point Y,
count = 3 count
source = A Y source =
dest = B dest
spare = C spare =

QWP -

recursive call 7 is made, and the new invocation of the method begins execution:

r
count 3 | count
source = A | source =
dest = B | dest =
spare = C | spare =

At point Z,
count 3 count
source = A Z source =
dest =B dest =
spare = C spare =

Tw N

is made, and the method continues execution.

[—————-—
Icount = l|
| source = B
| dest = C |
lSpare = A

This is the base case, so a disk is moved, the return is made, and the method continues execution.




X X J
0000
" 00000
Figure 2.21d eoes
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’) eoe
At point X, recursive call 8 is made, and the new invocation of the method begins execution:
count = 3 count = 2 count =1
source = A Z source = C X source = C
dest B dest =B dest = A )
spare = C spare = A spare =B

count = 3 count = 2 | count 1}
source = A Z source = C | source = C
dest B dest =B | dest = Al
spare = C spare = A lspare = B

At point Y, recursive call 9 is made, and the new invocation of the method begins execution:

count = 3 count = 2 count =1

source = A £ source = C Y source = ¢ | [ ..
dest = B dest = B dest =B M Gl
spare = C spare = A spare = A

count = 3 count 2 [count = 1}
source = A Vi source = C | source = C |
dest = B dest =B | dest = B
spare = C spare = A lspare = AJ




Figure 2.21e

Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

At point Z, recursive call 10 is made, and the new invocation of the method begins execution:

count = 3 count 2 count 1
source = A Z source = C Z source = A
dest = B dest = B dest =B
spare = C spare = A spare = C

count = 3 count 2 I count 1
source = A Z source = C | source = A
dest B dest = B | dest = B |
spare = C spare = A | spare = C}
This invocation completes, the return is made, and the method continues execution.
r—-——=——7= 1 r—-——=—=—"7 1
count = 3 | Spare = 2 | count = 1
source = A | source = C | | source = A
dest = B | dest = B | | dest = B |
spare = C |spare = Al I Spare = ol
| —— | S — |




Cost of Hanol Towers

e How many moves IS necessary to solve
Hanol Towers problem for N disks?

e moves(l)=1

e moves(N) = moves(N-1) + moves(1l) + moves(N-1)

° |.E.
moves(N) = 2*moves(N-1) + 1

e Guess solution and show it's correct with
Mathematical Induction!



Recursive Searching

e Linear Search
e Binary Search

e Find an element in an array, return its
position (index) If found, or -1 if not found.




Linear Search Algorithm (Java)

public int linSearch(int[] arr,
I nt target)
{
for (int 1=0; i<arr.size; I++) {
| f (target == arr[i]) {
return i;

}
} [/ for

return -1; //target not found




Linear Search

e lterate through an array of n items searching for the
target item

e The crucial instruction is equality checking (or
“‘comparisons” for short)
e X.equals(arr[i]); //for objects or

e X == arrf[i]; //for a primtive type
e Linear search performs at most n comparisons
e \We can write linear search recursively



Recursive Linear Search
Algorithm

e Base case
e Found the target or
e Reached the end of the array
e Recursive case
e Call linear search on array from the next item to the end

public int recLinSearch(int[] arr,int low int x) {

If (low >= arr.length) { // reach the end
return -1;

} else if (x == arr[low){
return | ow,
} el se
return recLinSearch(arr, low + 1, X);

}




Binary Search Sketch

e Linear search runs in O(n) (linear) time (it requires n
comparisons in the worst case)

e If the array to be searched is sorted (from lowest to highest), we
can do better:

e Check the midpoint of the array to see if it is the item we are
searching for

e Presumably there is only a 1/n chance that it is!
(assuming that the target is in the array)
e It the value of the item at the midpoint is less than the target then
the target must be in the upper half of the array
e So perform binary search on that half
e andsoon....



Thinking About Binary Search

e Each sub-problem searches an array slice (or subarray)

e So differs only in the upper and lower array indices that define the
array slice

e Each sub-problem is smaller than the previous problem
e Inthe case of binary search, half the size

e The final problem is so small that it is trivial

e Binary search terminates after the problem space consists of one
item or

e When the target item is found
e Be careful when writing the terminating condition

e When exactly do we want to stop?
When the search space consists of one element but
Only after that one element has been tested




Recursive Binary Search
Algorithm

public I nt binSearch(
int[] arr, int |ower, int upper, int X)
{
int md = (|l ower + upper) / 2;
I f (lower > upper) {// enpty iInterval
return - 1; // base case
} else if(arr[md] == x){
return md; // second base case
} elseif(arr[md] < x){
return binSearch(arr, md + 1, upper, X);
} else { // arr[md] > target
return binSearch(arr, lower, md - 1, X);

}



Analyzing Binary Search

e Best case: 1 comparison

e Worst case: target is not in the array, or is the last item to be
compared

Each recursive call halves the input size

Assume that n = 2k (e.g. if n =128, k=7)

After the first iteration there are n/2 candidates

After the second iteration there are n/4 (or n/2?) candidates

After the third iteration there are n/8 (or n/23) candidates

After the k-th iteration there is one candidate because n/2k =1
Because n = 2% k = log,n
Thus, at most k=log,n recursive calls are made in the worst case!



Binary Search vs Linear
Search

Linear Binary

N N log 2( N)

10 10 4

100 100 7

1,000 1000 10
10,000 10,000 14
100,000 100,000 17
1,000,000 1,000,000 20

10,000,000 10,000,000 24



lterative Binary Search

e Use awhi | e loop instead of recursive calls

e The initial values of lower and upper do not need to be
passed to the method but

e Can be Initialized before entering the loop with lower set
to O and upper to the length of the array-1

e Change the lower and upper indices in each iteration
e Use the (negation of the) base case condition as the
condition for the loop in the iterative version.

e Return a negative result if the while loop terminates
without finding the target



Binary Search Algorithm
(Java)

public int binSearch(int[] arr, int
I nt | ower 0;
I nt upper arr.length - 1

while (|l ower <= upper){
int md = (|l ower + upper) / 2;
I f (target == arr[md]) {
return md;
} else if (target > arr[md]) {
| ower = md + 1;
} else { //target < arr[m d]
upper = md - 1;
}
} //while
return -1; //target not found




Recursion Disadvantage 1

e Recursive algorithms have more overhead than
similar iterative algorithms

o Because of the repeated method calls (storing and
removing data from call stack)

e This may also cause a “stack overflow” when the call
stack gets full

e It is often useful to derive a solution using recursion
and implement it iteratively

e Sometimes this can be quite challenging!

(Especially, when computation continues after the
recursive call -> we often need to remember value of
some local variable -> stacks can be often used to store
that information.)



Recursion Disadvantage 2

e Some recursive algorithms are inherently inefficient

e An example of this is the recursive Fibonacci
algorithm which repeats the same calculation again
and again
e Look at the number of times fib(2) is called

e Even if the solution was determined using recursion
such algorithms should be implemented iteratively

e To make recursive algorithm efficient:

o Generic method (used in Al): store all results in some data
structure, and before making the recursive call, check
whether the problem has been solved.

e Make iterative version.



Function Analysis for call f1 b(5) §§§:

public static int fib(int n)
iIf (n=0|] n=1)
return n
el se
return fib(n-1) + fib(n-2)




