
Stack: Linked List
Implementation
� Push and pop at the head of the list

� New nodes should be inserted at the front of the list, so that they
become the top of the stack

� Nodes are removed from the front (top) of the list
� Straight-forward linked list implementation

� push and pop can be implemented fairly easily, e.g. assuming that
head is a reference to the node at the front of the list

public void push(int x){
// Make a new node whose next reference is
// the existing list
Node newNode = new Node(x, top);
top = newNode; // top points to new node

}

List Stack Example

Java Code
Stack st = new Stack();
st.push(6);

top

6

List Stack Example

Java Code
Stack st = new Stack();
st.push(6);
st.push(1);

top

6

1

List Stack Example

Java Code
Stack st = new Stack();
st.push(6);
st.push(1);
st.push(7);top

6

1

7

List Stack Example

Java Code
Stack st = new Stack();
st.push(6);
st.push(1);
st.push(7);
st.push(8);

top

6

1

7

8

List Stack Example

Java Code
Stack st = new Stack();
st.push(6);
st.push(1);
st.push(7);
st.push(8);
st.pop();

top

6

1

7

8

List Stack Example

Java Code
Stack st = new Stack();
st.push(6);
st.push(1);
st.push(7);
st.push(8);
st.pop();

top

6

1

7

Stack: ADT List
Implementation
� Push() and pop() either at the beginning or at the end

of ADT List
� at the beginning:

public void push(Object newItem) {

list.add(1, newItem);

} // end push

public Object pop() {

Object temp = list.get(1);

list.remove(1);

return temp;

} // end pop

Stack: ADT List
Implementation
� Push() and pop() either at the beginning or at the end

of ADT List
� at the end:

public void push(Object newItem) {

list.add(list.size()+1, newItem);

} // end push

public Object pop() {

Object temp = list.get(list.size());

list.remove(list.size());

return temp;

} // end pop

Stack: ADT List
Implementation
� Push() and pop() either at the beginning or at the end

of ADT List
� Efficiency depends on implementation of ADT List (not

guaranteed)
� On other hand: it was very fast to implement (code is

easy, unlikely that errors were introduced when
coding).

Applications of Stacks

� Call stack (recursion).
� Searching networks, traversing trees

(keeping a track where we are).

Examples:
� Checking balanced expressions
� Recognizing palindromes
� Evaluating algebraic expressions

Simple Applications of the ADT Stack:
Checking for Balanced Braces

� A stack can be used to verify whether a program
contains balanced braces
� An example of balanced braces

abc{defg{ijk}{l{mn}}op}qr

� An example of unbalanced braces

abc{def}}{ghij{kl}m

abc{def}{ghij{kl}m

Checking for Balanced Braces

� Requirements for balanced braces
� Each time you encounter a “}”, it matches an already

encountered “{”
� When you reach the end of the string, you have matched

each “{”

Checking for Balanced Braces

Figure 7Figure 7--33
Traces of the algorithm that checks for balanced braces

Evaluating Postfix
Expressions

� A postfix (reverse Polish logic) calculator
� Requires you to enter postfix expressions

� Example: 2 3 4 + *

� When an operand is entered, the calculator
� Pushes it onto a stack

� When an operator is entered, the calculator
� Applies it to the top two operands of the stack
� Pops the operands from the stack
� Pushes the result of the operation on the stack

Evaluating Postfix
Expressions

Figure 7Figure 7--88
The action of a postfix calculator when evaluating the expression 2 * (3 + 4)

Evaluating Postfix Expressions

� Pseudo code:
int evaluate(String expression)

{

Stack stack=new Stack(); // creaty empty stack

while (true) {

String c=expression.getNextItem();

if (c==ENDOFLINE)

return stack.pop();

if (c is operand)

stack.push(c);

else { // operation

int operand2=stack.pop();

int operand1=stack.pop();

stack.push(execute(c,operand1,operand2));

}

}

}

Queues

� A queue is a data structure that only allows items to
be inserted at the end and removed from the front

� “Queue” is the British word for a line (or line-up)
� Queues are FIFO (First In First Out) data structures

– “fair” data structures

Using a Queue

What Can You Use a Queue
For?

� Processing inputs and outputs to screen (console)
� Server requests

� Instant messaging servers queue up incoming
messages

� Database requests
� Print queues

� One printer for dozens of computers
� Operating systems use queues to schedule CPU

jobs
� Simulations

Queue Operations

� A queue should implement (at least) these
operations:
� enqueue – insert an item at the back of the queue
� dequeue – remove an item from the front
� peek – return the item at the front of the queue without

removing it

� Like stacks it is assumed that these operations will
be implemented efficiently
� That is, in constant time

Queue: Array Implementation

� First consider using an array as the underlying
structure for a queue, one plan would be to
� Make the back of the queue the current size of the

queue (i.e., the number of elements stored)
� Make the front of the queue index 0
� Inserting an item can be performed in constant time
� But removing an item would require shifting all elements

in the queue to the left which is too slow!

� Therefore we need to find another way

An Array-Based
Implementation

Figure 8Figure 8--88
a) A naive array-based implementation of a queue; b) rightward drift can cause the

queue to appear full

