Stack: Linked List
Implementation

e Push and pop at the head of the list

e New nodes should be inserted at the front of the list, so that they
become the top of the stack

e Nodes are removed from the front (top) of the list

e Straight-forward linked list implementation

e push and pop can be implemented fairly easily, e.g. assuming that
head is a reference to the node at the front of the list

public void push(int x){
// NMake a new node whose next reference is
/] the existing |i st
Node newNode = new Node(x, top);
top = newNode; // top points to new node



t op

List Stack Example -




List Stack Example

t op

1

e

e




List Stack Example 3




List Stack Example

iy

D

iy
J—h




List Stack Example

iy

D

iy
J—h




List Stack Example

top—— !
—
—

D
D
s [




Stack: ADT List
Implementation

e Push() and pop() either at the beginning or at the end
of ADT List

e at the beginning:
public void push(Cbject newtem {

|1 st.add(1l, newtem;

} [/ end push

public Cbject pop() {
Object tenp = list.get(1);
|1 st.renove(l);
return tenp;

} /1 end pop



Stack: ADT List
Implementation

e Push() and pop() either at the beginning or at the end
of ADT List

e atthe end:
public void push(Cbject newtem {

|1 st.add(li1st.size()+1l, nemtem;
} [/ end push
public Cbject pop() {
oject tenp = list.get(list.size());
|1 st.renove(list.size());
return tenp;
} // end pop



Stack: ADT List
Implementation

e Push() and pop() either at the beginning or at the end
of ADT List

e Efficiency depends on implementation of ADT List (not
guaranteed)

e On other hand: it was very fast to implement (code is
easy, unlikely that errors were introduced when
coding).



Applications of Stacks

e Call stack (recursion).

e Searching networks, traversing trees
(keeping a track where we are).

Examples:

e Checking balanced expressions
e Recognizing palindromes

e Evaluating algebraic expressions




Simple Applications of the ADT Stack:
Checking for Balanced Braces

e A stack can be used to verify whether a program
contains balanced braces

e An example of balanced braces

abc{defg{i]k}{I{m}}op}qgr
e An example of unbalanced braces

abc{def}}{ghij{kl}m

abc{def}{ghij{kl}Im



Checking for Balanced Braces

e Requirements for balanced braces
e Each time you encounter a “}’, it matches an already
encountered “{"

e When you reach the end of the string, you have matched
eaCh H{”



Checking for Balanced Braces

Input string Stack as algorithm executes
1. 2. 3. 4,
{a{b}c}
{
{ { {
{a{bc}
{
{ { {
{ab}c}
{
Figure 7-3

1. push " {"

2. push "{"

3. pop

4. pop

Stack empty —= balanced

1. push " {"

2. push "{"

3. pop

Stack not empty —> not balanced

1. push " {"

2. pop
Stack empty when last "}" encountered —>not balanced

Traces of the algorithm that checks for balanced braces



Evaluating Postfix
Expressions

e A postfix (reverse Polish logic) calculator
e Requires you to enter postfix expressions
Example: 234 +*
e When an operand is entered, the calculator
Pushes it onto a stack

e \When an operator is entered, the calculator
Applies it to the top two operands of the stack
Pops the operands from the stack
Pushes the result of the operation on the stack



Evaluating Postfix
Expressions

Key entered

Calculator action

Stack (bottom to top)

2
3
4

Figure 7-8

push 2
push 3
push 4
operand2 = pop stack 4)
operandl = pop stack (3)

result = operandl + operand2 (7)
push result

operand2 = pop stack (7)
operandl = pop stack (2)

result = operandl * operand2 (14)
push result

NN N
w W
N

N

14

The action of a postfix calculator when evaluating the expression 2 * (3 + 4)



Evaluating Postfix Expressions

e Pseudo code:

I nt evaluate(String expression)
{
Stack stack=new Stack(); // creaty enpty stack
while (true) {
String c=expression.getNextltem);
I f (c==ENDOFLI NE)
return stack. pop();

I f (c is operand)
st ack. push(c);
else { // operation
i nt operand2=st ack. pop()
I nt operandl=stack. pop();
st ack. push(execut e(c, operandl, operand?2)) ;




Queues

e A ueue Is a data structure that only allows items to
be inserted at the end and removed from the front

e “Queue’ Is the British word for a line (or line-up)

e Queues are FIFO (First In First Out) data structures
— “fair” data structures



Using a Queue




What Can You Use a Queue
For?

e Processing inputs and outputs to screen (console)

e Server requests

e Instant messaging servers queue up incoming
messages

e Database requests

e Print queues
e One printer for dozens of computers

e Operating systems use queues to schedule CPU
jobs

e Simulations



Queue Operations

e A dueue should implement (at least) these
operations:
e engueue — insert an item at the back of the queue
e dequeue — remove an item from the front
e peek —return the item at the front of the queue without
removing it

e Like stacks it is assumed that these operations will
be implemented efficiently
e Thatis, in constant time



Queue: Array Implementation

e First consider using an array as the underlying
structure for a queue, one plan would be to

e Make the back of the queue the current size of the
gueue (i.e., the number of elements stored)

e Make the front of the queue index O
e Inserting an item can be performed in constant time

e But removing an item would require shifting all elements
In the queue to the left which is too slow!

e Therefore we need to find another way



An Array-Based
Implementation

items
a) 0 3 ¥, 4 1 7
front back 0 1 2 3 MAX QUEUE -1 <«— Array indexes
items
b) 47 49 6 10 2
front back 0 1 47 48 49
L MAX OUEUE - 1
Figure 8-8

a) A naive array-based implementation of a queue; b) rightward drift can cause the

gueue to appear full



