
Stacks

� A stack is a data structure that only allows items to
be inserted and removed at one end
� We call this end the top of the stack
� The other end is called the bottom

� Access to other items in the stack is not allowed
� A LIFO (Last In First Out) data structure

Using a Stack

What Are Stacks Used For?

� Most programming languages use a “call stack” to
implement function calling
� When a method is called, its line number and other useful

information are pushed (inserted) on the call stack
� When a method ends, it is popped (removed) from the call

stack and execution restarts at the indicated line number in
the method that is now at the top of the stack

The Call Stack

This is a display of the call stack (from the
Eclipse Debug window)

Top of the stack:
most recently

called method.

Bottom of the stack: least
recently called method

Call Stacks and Recursion

� A call stack is what makes recursion possible
� Stacks are also important when traversing tree data

structures
� They enable us to “backtrack” through the tree
� We’ll see more about this later in the course

Stack Operations

� A stack should implement (at least) these
operations:
� push – insert an item at the top of the stack
� pop – remove and return the top item
� peek – return the top item (without removing it)

� These operations should be performed efficiently –
in O(1) time

Axioms

� Axioms are used to define an ADT formally
� Example

� Axiom to specify that the last item inserted into stack
is the first item to be removed
(stack.push(newItem)).pop() = stack

(stack.push(newItem)).peek() = newItem

Stack Implementation

� The stack ADT can be implemented using a variety
of data structures. We will look at two:
� Arrays
� Linked Lists

� Both implementations must implement all the stack
operations

Stack: Array Implementation

� If an array is used to implement a stack what is a
good index for the top item?
� Is it position 0?
� Is it position n-1?

� Note that push and pop must both work in O(1) time
as stacks are usually assumed to be extremely fast

� The index of the top of the stack is the number of
items in the stack - 1

Array Stack Example

6 1 7 8

0 1 2 3 4 5

index of top is
current size – 1

//Java Code
Stack st = new Stack();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3

Array Stack Example

6 1 7

0 1 2 3 4 5

index of top is
current size – 1

//Java Code
Stack st = new Stack();
st.push(6); //top = 0
st.push(1); //top = 1
st.push(7); //top = 2
st.push(8); //top = 3
st.pop(); //top = 2

Array Implementation
Summary

� Easy to implement a stack with an array
� push and pop can be performed in O(1) time
� But the implementation is subject to the limitation of arrays that

the size must be initially specified because
� The array size must be known when the array is created and is

fixed, so that the right amount of memory can be reserved
� Once the array is full no new items can be inserted

� If the maximum size of the stack is not known (or is much larger
than the expected size) a dynamic array can be used
� But occasionally push will take O(n) time

