Comparison summary

e Array based (dynamic) e Reference based (LL)

e Keeps place for up to 4N o Keeps place for exactly
elements N elements

e Each element takes 1 e Each element takes 2
memory places memory places

e [Fast accession time e Slow accession time

e Slow removals and e Slow removals and
Insertion (due to need of Insertion (due to
copying data and accession)

resizing array)

Passing a Linked List to a
Method

e A method with access to a linked list's head reference has
access to the entire list

e When head is an actual argument to a method, its value Is
copied into the corresponding formal parameter

Actual argument
head

-
\

2 *o— » 4 .,__> 6 [e e 0o @ EE— 86
e

headRef
Formal parameter

Figure 5-19

A head reference as an argument

Examples

e Merge() method, takes 2 sorted lists and
returns one sorted list containing all elements
(the original lists can be destroyed)

e Fast insertions and deletions at the beginning
of the list using array-based implementation

e Fast insertion at the end and fast deletion at
the beginning using linked-list (alternatively,
array-based) implementation [tail reference]

Variations of the Linked List:
Tall References

e tall references

e Remembers where the end of the linked list is

e To add a node to the end of a linked list
tail.set Next (new Node(request, null));

head T

Figure 5-22

A linked list with head andt ai | references

Doubly Linked List

e Each node references both its predecessor and its

SUCCessSor

e Dummy head nodes are useful in doubly linked lists

Able <lo| Baker [+« o

< Je| Jones |« oo

>
-«

Smith | o e e

—»>
<€

-®

Wilson | ¢«

head

Figure 5-26
A doubly linked list

000
0000
0000
4
Doubly Linked List :
e To delete the node that cur r references
curr.get Precede().set Next (curr.getNext());
curr.get Next().set Precede(curr.getPrecede());
Node N
<] Baker [+« ‘;:::t Jones | e e :_____'t, Smith |« o« o |*Te—
A_/
curr
Figure 5-28

Reference changes for deletion

Doubly Linked List

To Iinsert a new node that newiNode references before| the
node referenced by curr

newNode. set Next (curr);

newNode. set Precede(curr. get Precede());
curr. set Precede(newNode) ;

newNode. get Precede() . set Next (newNode) ;

Baker |« oo | J€—"" smith [+« « « [« Figure 5-29

\‘ ,f A Reference changes

l for insertion

T curr

newNode

Eliminating special cases In

Doubly Linked List

(@) 1listHead

B

I

»

o>
-l
3

.| Able [+o o]

o Baker [« e« |*

Ay

JJones e o]

Jsmith [« oo o]

Ay

o|Wilson| e ¢«

— |/

LDummy head node

(b) listHead

I

!
I
_J
Figure 5-27

a) A circular doubly linked list with a dummy head node; b) an empty list with a
dummy head node

Doubly Linked List

e Circular doubly linked list

pr ecede reference of the dummy head node references
the last node

next reference of the last node references the dummy
head node

Eliminates special cases for insertions and deletions

Doubly Linked List - benefits

e Fast insertions and deletions at both ends of
the list

e To perform deletion and insertion, we need
reference to the current node (to node after
place where we are inserting).

(Usual implementation of LinkedLists)

