
Comparison summary

� Array based (dynamic)

� Keeps place for up to 4N 
elements

� Each element takes 1 
memory places

� Fast accession time
� Slow removals and 

insertion (due to need of 
copying data and 
resizing array)

� Reference based (LL)

� Keeps place for exactly 
N elements

� Each element takes 2 
memory places

� Slow accession time
� Slow removals and 

insertion (due to 
accession)



Passing a Linked List to a 
Method
� A method with access to a linked list’s head reference has 

access to the entire list
� When head is an actual argument to a method, its value is 

copied into the corresponding formal parameter

Figure 5Figure 5--1919
A head reference as an argument



Examples

� Merge() method, takes 2 sorted lists and 
returns one sorted list containing all elements 
(the original lists can be destroyed)

� Fast insertions and deletions at the beginning 
of the list using array-based implementation

� Fast insertion at the end and fast deletion at 
the beginning using linked-list (alternatively, 
array-based) implementation [tail reference]



Variations of the Linked List:
Tail References

� tail references
� Remembers where the end of the linked list is
� To add a node to the end of a linked list

tail.setNext(new Node(request, null));

Figure 5Figure 5--2222
A linked list with head and tail references



Doubly Linked List
� Each node references both its predecessor and its 

successor
� Dummy head nodes are useful in doubly linked lists

Figure 5Figure 5--2626
A doubly linked list



Doubly Linked List
� To delete the node that curr references

curr.getPrecede().setNext(curr.getNext());

curr.getNext().setPrecede(curr.getPrecede());

Figure 5Figure 5--2828
Reference changes for deletion



Doubly Linked List
� To insert a new node that newNode references before the 

node referenced by curr
newNode.setNext(curr);
newNode.setPrecede(curr.getPrecede());
curr.setPrecede(newNode);
newNode.getPrecede().setNext(newNode);

Figure 5Figure 5--2929
Reference changes 

for insertion



Eliminating special cases in 
Doubly Linked List

Figure 5Figure 5--2727
a) A circular doubly linked list with a dummy head node; b) an empty list with a 

dummy head node



Doubly Linked List

� Circular doubly linked list
� precede reference of the dummy head node references 

the last node
� next reference of the last node references the dummy 

head node
� Eliminates special cases for insertions and deletions



Doubly Linked List - benefits

� Fast insertions and deletions at both ends of 
the list

� To perform deletion and insertion, we need 
reference to the current node (to node after 
place where we are inserting).

(Usual implementation of LinkedLists)


