
Linked Lists

Preliminaries

� Options for implementing an ADT List
� Array

� Has a fixed size
� Data must be shifted during insertions and deletions

� Dynamic array
� Linked list

� Is able to grow in size as needed
� Does not require the shifting of items during insertions

and deletions
� Accessing an element does not take a constant time

Linked Lists

� A linked list is a dynamic data structure consisting of
nodes and links:

6 2

7

start

8

This symbol
indicates a null

reference

Linked Lists

� Each node contains two
things
� The data
� A pointer to the next node

7

Linked Lists

class Node {

public int data;

public Node next;

} 7

Linked Lists

class Node {

public int data;

public Node next;

} 7

A node points to
another node, so the

pointer must be of
type Node

Building a Linked List

Node a = new Node(7, null);

a

Assume we’ve added a

constructor to the Node

class that lets us initialize

data and next like this.

7

Building a Linked List
Node a = new Node(7, null);

a.next = new Node(3, null);

a

7 3

a.next
a.data a.next.data

Traversing a Linked List

Node a = new Node(7, null);
a.next = new Node(3, null);
Node p = a;

a

7 3

p

Building a Linked List

Node a = new Node(7, null);
a.next = new Node(3, null);
Node p = a;
p = p.next; // go to the next node

a

7 3

We can walk through a linked list by
traversing nodes one by one.

p

Traversing a Linked List

Node a = new Node(7, null);
a.next = new Node(3, null);
Node p = a;
p = p.next; // go to the next node
p = p.next;

a

7 3

Eventually, p hits the end of the list
and becomes null.

p

Preliminaries

Figure 5Figure 5--11
a) A linked list of integers; b) insertion; c) deletion

Reference-based
implementation

� Reference-based implementations of ADT use Java
references

� We are going to look at a reference-based
implementation of ATD list (using linked lists)

Object References (review)

� A reference variable
� Contains the location of an object
� Example

Node node;
node = new Node(5,null);

� As a data field of a class
� has the default value null

� As a local reference variable (in a method)
� does not have a default value

Object References

� When one reference variable is assigned to another
reference variable, both references then refer to the
same object

Integer p, q;

p = new Integer(6);

q = p;

� A reference variable that no longer references any
object is marked for garbage collection

Object References

Figure 5Figure 5--3a3a--dd
a) Declaring reference

variables; b) allocating an

object; c) allocating another

object, with the dereferenced

object marked for garbage

collection

Object References

Figure 5Figure 5--3e3e--gg
e) allocating an object; f) assigning

null to a reference variable;

g) assigning a reference with a

null value

Object References (arrays)

� An array of objects
� Is actually an array of references to the objects
� Example

Integer[] scores = new Integer[30];

� Instantiating Integer objects for each array reference

scores[0] = new Integer(7);

scores[1] = new Integer(9); // and so on …

Object References (equality)

� Equality operators (== and !=)
� Compare the values of the reference variables,

not the objects that they reference
� equals method

� Compares objects by contents

Object References

� When an object is passed to a method as an
argument, the reference to the object is copied to
the method’s formal parameter

public void changeInteger(Integer n)

{
n=new Integer(5);

}
Integer p= new Integer(7);

changeInteger(p);

Reference-Based Linked Lists

� Linked list
� Contains nodes that are linked to one

another
� A node

� Contains both data and a “link” to
the next item

� Can be implemented as an object

public class Node {

private Object item;
private Node next;

// constructors, accessors,
// and mutators …

} // end class Node

Figure 5Figure 5--55
A node

public class Node {
private Object item;
private Node next;

public Node(Object newItem) {
item = newItem;
next = null;

} // end constructor

public Node(Object newItem, Node nextNode) {
item = newItem;
next = nextNode;

} // end constructor

public void setItem(Object newItem) {
item = newItem;

} // end setItem

public Object getItem() {
return item;

} // end getItem

public void setNext(Node nextNode) {
next = nextNode;

} // end setNext

public Node getNext() {
return next;

} // end getNext
} // end class Node

Reference-Based Linked Lists
� Using the Node class

Node n = new Node (new Integer(6));
Node first = new Node (new Integer(9), n);

Figure 5Figure 5--77
Using the Node constructor to initialize a data field and a link value

Reference-Based Linked Lists

� Data field next in the last node is set to null
� head reference variable

� References the list’s first node
� Always exists even when the list is empty

Figure 5Figure 5--88
A head reference to a linked list

Reference-Based Linked Lists

public class ListReferenceBased
implements ListInterface {

// reference to linked list of items
private Node head;
private int numItems;

// number of items in list

public ListReferenceBased() {
numItems = 0;

head = null;
} // end default constructor

Programming with Linked Lists:
Displaying the Contents of a Linked List

� curr reference variable
� References the current node
� Initially references the first node

� To display the data portion of the current node
System.out.println(curr.getItem());

� To advance the current position to the next node
curr = curr.getNext();

Displaying the Contents of a
Linked List

Figure 5Figure 5--1010
The effect of the assignment curr = curr.getNext()

Displaying the Contents of a
Linked List

� To display all the data items in a linked list
for (Node curr = head; curr != null; curr =

curr.getNext()) {

System.out.println(curr.getItem());

} // end for

Deleting a Specified Node from
a Linked List
� To delete node N which curr references

� Set next in the node that precedes N to reference the node that
follows N
prev.setNext(curr.getNext());

Figure 5Figure 5--1111
Deleting a node from a linked list

Deleting a Specified Node from
a Linked List

� Deleting the first node is a special case
head = head.getNext();

Figure 5Figure 5--1212
Deleting the first node

Deleting a Specified Node from
a Linked List

� To return a node that is no longer needed to the
system

curr.setNext(null);

curr = null;

� Three steps to delete a node from a linked list
� Locate the node that you want to delete
� Disconnect this node from the linked list by changing

references
� (Return the node to the system)

