Designing an ADT

e The design of an ADT should evolve naturally during
the problem-solving process

e Questions to ask when designing an ADT
e What data does a problem require?
e What operations does a problem require?

Examples: polynomial, appointment book

e ADT can suggest other ADTs

Appendix 1.
Java Exceptions (review)

e EXxception
e A mechanism for handling an error during execution

e A method indicates that an error has occurred by throwing
an exception

Java Exceptions

e Catching exceptions
e try block

A statement that might throw an exception is placed
within at ry block

Syntax

try {
statenent (S);

} /] end try

Java Exceptions

e Catching exceptions (Continued)
e cat ch block

Used to catch an exception and deal with the error
condition

Syntax
catch (exceptionClass identifier) {
st at enment (s);
} /] end catch

Java Exceptions

e Types of exceptions
e Checked exceptions

Instances of classes that are subclasses of the
] ava. | ang. Except i on class

Must be handled locally or explicitly thrown from the
method

Used in situations where the method has encountered
a serious problem

Checked exceptions

public class Test Excepti onExanple {
public static void getlnput(String fileNane) {
FilelnputStream fis;
fis = new FilelnputStrean(fil eNane);
/|l file processing code appears here

} // end getl nput

public static void main(String[] args) {
getlnput ("test.dat");
} // end main

} // end Test Excepti onExanpl e

Java Exceptions

e Types of exceptions (Continued)
e Runtime exceptions
Used in situations where the error is not considered as
serious
Can often be prevented by fail-safe programming

Instances of classes that are subclasses of the
Runt | neExcepti on class

Are not required to be caught locally or explicitly
thrown again by the method

Java Exceptions

e Throwing exceptions
e At hrowstatement is used to throw an exception
t hrow new excepti onC ass
(stringArgunent);
e Defining a new exception class
e A programmer can define a new exception class

cl ass MyExcepti on extends Exception {
public MyException(String s) {
super (s);
} // end constructor

} // end MyException

Implementing ADTSs

e Choosing the data structure to represent the ADT’s
data is a part of implementation
e Choice of a data structure depends on
Details of the ADT’s operations
Context in which the operations will be used

e Implementation details should be hidden behind a
wall of ADT operations

e A program would only be able to access the data structure
using the ADT operations

An Array-Based
Implementation of the ADT List

e An array-based implementation
e Alist’'s items are stored inan array i t ens
e A natural choice

Both an array and a list identify their items by number
o Alist's k' item will be stored ini t ens[k- 1]

k

An Array-Based sess
Implementation of the ADT List| ::
L»O 1 2 3 k-1 MAX LIST -1

numItems ’—> 1 2 3 4

Figure 4-11

An array-based implementation of the ADT list

ADT list positions

An Array-Based
Implementation of the ADT List

public class ListArrayBased
| npl enents Listlinterface {

private static final 1nt MAX LI ST = 50;
private (bject 1tens[];
[/ an array of list itens

private int numtens,;
[/ nunber of itens in |ist

Appendix 2.
Arrays In Java (review)

e Arrays are sequences of identically typed values

e Values are stored at specific numbered positions In
the array

e The first value iIs stored at index 0, the second at index
1, the ith at index iI-1, and so on

e The last item is stored at position n-1, assuming that n
values are stored in the array

e Values are stored sequentially in main memory

Arrays in Java

e To declare an array follow the type with (empty) [] s
e int[] grade; //or
e int grade[]; //both declare an int array

e |n Java arrays are objects!

Objects

String s

S

In Java

= new String("cat"):

\

Objects In Java (review) 3t

String s = new String("cat");

Objects in Java

String s = new String("cat");
S = null;

Objects in Java 3t

String s = new String("cat");

S = null;

S
\/

/
|

Objects in Java 3t

String s = new String("cat");
Stringt = s;

T

Arrays in Java

e To declare an array follow the type with (empty) [] s
e int[] grade; //or
e int grade[]; //both declare an int array
e |n Java arrays are objects so must be created with the
new keyword
e To create an array of ten integers:
Int[] grade = new int[10];

Note that the array size has to be specified, although it can
be specified with a variable at run-time

Arrays in Java

e When the array is created memory is reserved for its contents

e Initialization lists can be used to specify the initial values of an
array, in which case the new operator is not used

Int[] grade = {87, 93, 35}; //array of 3
I nts

e To find the length of an array use its . | engt h variable

e int nunades = grade.length; //note: not
.length()!!

Array Indexing

-
D

e int[] arr = {3,7,6,8,1,7,2}: I ndex va
creates a new integer array with seven 0
elements
e The elements are assigned values as given

in the initialization list

e Individual elements can be accessed by
referring to the array name and the
appropriate index
e int x = arr[3]; would assign the value

of the fourth array element (8) to x
e arr[5] = 11; would change the sixth
element of the array from 7 to 11

e arr[7] = 3; would resultin an error
because the index is out of bounds

| O O| N| W

11

o o1 B\ W N P

Arrays and Main Memory 3t

main memory is depicted below

gr ade |M<

Arrays and Main Memory 3t

Int[] grade;

grade = new | nt[4];<—-

main memory is depicted below

gr ade IM >

0
0
0
0

Arrays and Main Memory

Int[] grade;

grade = new int[4];
grade[2] = 23; «

main memory is depicted below

gr ade

0

0

23

0

Offset Calculations

e Given something like grade[2] = 23; how do we find a
particular element in the array?

e We know the address of the first element in the array

e Because we know the type of the values stored in the array, we
know the size of each element in the array
e 4 bytesinthe case of ani nt

e We know which element we want to access

e \We can therefore calculate the address of the desired element as
being:
e address of first element + index * size of stored type

Passing Arrays to Methods

e Array variables are reference variables

e When an array variable is passed as an argument to a method the
method is being given the address of an array object

e Not a new copy of the array object
e Any changes made to the array in the method are therefore
made to the original (and only) array object

e If this is not desired, a copy of the array should be made within the
method

Arrays are Static Data
Structures

e The size of an array must be specified when it is
created with newand cannot be changed

e If the array is full new items can’t be added to it
e There are, time consuming, ways around this

e To avoid this problem make arrays much larger than they
are needed

e However this wastes space

