
Designing an ADT

� The design of an ADT should evolve naturally during
the problem-solving process

� Questions to ask when designing an ADT
� What data does a problem require?
� What operations does a problem require?

Examples: polynomial, appointment book
`
� ADT can suggest other ADTs

Appendix 1.
Java Exceptions (review)

� Exception
� A mechanism for handling an error during execution
� A method indicates that an error has occurred by throwing

an exception

Java Exceptions

� Catching exceptions
� try block

� A statement that might throw an exception is placed
within a try block

� Syntax
try {

statement(s);

} // end try

Java Exceptions

� Catching exceptions (Continued)
� catch block

� Used to catch an exception and deal with the error
condition

� Syntax
catch (exceptionClass identifier) {

statement(s);

} // end catch

Java Exceptions

� Types of exceptions
� Checked exceptions

� Instances of classes that are subclasses of the
java.lang.Exception class

� Must be handled locally or explicitly thrown from the
method

� Used in situations where the method has encountered
a serious problem

Checked exceptions
public class TestExceptionExample {

public static void getInput(String fileName) {

FileInputStream fis;

fis = new FileInputStream(fileName);

// file processing code appears here

} // end getInput

public static void main(String[] args) {

getInput("test.dat");

} // end main

} // end TestExceptionExample

Java Exceptions

� Types of exceptions (Continued)
� Runtime exceptions

� Used in situations where the error is not considered as
serious

� Can often be prevented by fail-safe programming
� Instances of classes that are subclasses of the
RuntimeException class

� Are not required to be caught locally or explicitly
thrown again by the method

Java Exceptions

� Throwing exceptions
� A throw statement is used to throw an exception

throw new exceptionClass
(stringArgument);

� Defining a new exception class
� A programmer can define a new exception class

class MyException extends Exception {

public MyException(String s) {

super(s);

} // end constructor

} // end MyException

Implementing ADTs

� Choosing the data structure to represent the ADT’s
data is a part of implementation
� Choice of a data structure depends on

� Details of the ADT’s operations
� Context in which the operations will be used

� Implementation details should be hidden behind a
wall of ADT operations
� A program would only be able to access the data structure

using the ADT operations

An Array-Based
Implementation of the ADT List

� An array-based implementation
� A list’s items are stored in an array items

� A natural choice

� Both an array and a list identify their items by number
� A list’s kth item will be stored in items[k-1]

An Array-Based
Implementation of the ADT List

Figure 4Figure 4--1111
An array-based implementation of the ADT list

An Array-Based
Implementation of the ADT List

public class ListArrayBased

implements ListInterface {

private static final int MAX_LIST = 50;

private Object items[];

// an array of list items

private int numItems;
// number of items in list

Appendix 2.
Arrays in Java (review)

� Arrays are sequences of identically typed values
� Values are stored at specific numbered positions in

the array
� The first value is stored at index 0, the second at index

1, the ith at index i-1, and so on
� The last item is stored at position n-1, assuming that n

values are stored in the array

� Values are stored sequentially in main memory

Arrays in Java
� To declare an array follow the type with (empty) []s

� int[] grade; //or

� int grade[]; //both declare an int array

� In Java arrays are objects!

Objects in Java

String s = new String("cat");

s

cat

Objects in Java (review)

String s = new String("cat");

s

cat

The variable s
is a reference
to the object

Objects in Java

String s = new String("cat");

S = null;

s

cat

Makes s not refer to
the object any more

Objects in Java

String s = new String("cat");

S = null;

s

cat

Makes s not refer to
the object any more

The object gets deleted
by Java’s automated
garbage collection

Objects in Java

String s = new String("cat");

String t = s;

s

cat

This makes another reference to the
object --- but no new object is created!!

t

Arrays in Java
� To declare an array follow the type with (empty) []s

� int[] grade; //or

� int grade[]; //both declare an int array

� In Java arrays are objects so must be created with the
new keyword
� To create an array of ten integers:

� int[] grade = new int[10];

� Note that the array size has to be specified, although it can
be specified with a variable at run-time

Arrays in Java
� When the array is created memory is reserved for its contents
� Initialization lists can be used to specify the initial values of an

array, in which case the new operator is not used
� int[] grade = {87, 93, 35}; //array of 3
ints

� To find the length of an array use its .length variable
� int numGrades = grade.length; //note: not

.length()!!

Array Indexing
� int[] arr = {3,7,6,8,1,7,2};

creates a new integer array with seven
elements
� The elements are assigned values as given

in the initialization list
� Individual elements can be accessed by

referring to the array name and the
appropriate index
� int x = arr[3]; would assign the value

of the fourth array element (8) to x
� arr[5] = 11; would change the sixth

element of the array from 7 to 11
� arr[7] = 3; would result in an error

because the index is out of bounds 26

75

14

83

62

71

30

valueindex

11

error!

Arrays and Main Memory

int[] grade; Declares an array
variable

grade

In Java arrays are
objects, so this is a
reference variable

“null pointer”
main memory is depicted below

Arrays and Main Memory

int[] grade;

grade = new int[4]; Creates a new
array of size 4

grade

main memory is depicted below

0

0

0

0

Stores 4 ints
consecutively.
The ints are
initialized to 0

points to the
newly created
array object

Arrays and Main Memory

int[] grade;

grade = new int[4];

grade[2] = 23;
Assigns 23 to the third
item in the array

grade

main memory is depicted below

0

0

0

0
But how does
the system
“know” where
grade[2] is?

23

Offset Calculations
� Given something like grade[2] = 23; how do we find a

particular element in the array?
� We know the address of the first element in the array
� Because we know the type of the values stored in the array, we

know the size of each element in the array
� 4 bytes in the case of an int

� We know which element we want to access
� We can therefore calculate the address of the desired element as

being:
� address of first element + index * size of stored type

Passing Arrays to Methods

� Array variables are reference variables
� When an array variable is passed as an argument to a method the

method is being given the address of an array object
� Not a new copy of the array object

� Any changes made to the array in the method are therefore
made to the original (and only) array object
� If this is not desired, a copy of the array should be made within the

method

Arrays are Static Data
Structures

� The size of an array must be specified when it is
created with new and cannot be changed

� If the array is full new items can’t be added to it
� There are, time consuming, ways around this
� To avoid this problem make arrays much larger than they

are needed
� However this wastes space

