
Hashing with Separate Chaining
Implementation – data members
public class SCHashTable<T extends KeyedItem>
implements HashTableInterface<T>
{
private List<T>[] table;

private int h(long key) // hash function
// return index
{
return (int)(key % table.length); // typecast to int

}

public SCHashTable(int size)
// recommended size: prime number roughly twice big ger
// than the expected number of el ements
{

table = new List[size];
// initialize the lists
for (int i=0; i<size; i++)

table[i] = new List<T>();
}

Implementation – insertion
public void insert(T item)

{

int index = h(item.getKey());

List<T> L = table[index];

// insert item to L

L.add(1,item); // if linked list is used,

// insertion will be efficient

}

Implementation – search
private int findIndex(List<T> L, long key)

// search for item with key 'key' in L
// return -1 if the item with key 'key' was not fou nd in L
{

// search of item with key = 'key'
for (int i=1; i<=L.size(); i++)
if (L.get(i).getKey() == key)
return i;

return -1; // not found
}

public T find(long key)
{
int index = h(key);
List<T> L = table[index];
int list_index = findIndex(L,key);
if (index>=0)
return L.get(list_index);

else
return null; // not found

}

Implementation – deletion
public T delete(long key)

{

int index = h(key);

List<T> L = table[index];

int list_index = findIndex(L,key);

if (index>=0) {

T item = L.get(list_index);

L.remove(list_index);

return item;

} else

return null; // not found

}

Figure: The relative efficiency of four collision-resolution methods

Hashing – comparison of different
methods

Comparing hash tables and
balanced BSTs

� With good hash function and load kept low, hash
tables perform insertions, deletions and search in
O(1) time on average, while balanced BSTs in O(log
n) time.

� However, there are some tasks (order related) for
which, hash tables are not suitable:
� traversing elements in sorted order: O(N+n.log n) vs. O(n)
� finding minimum or maximum element: O(N) vs. O(1)
� range query: finding elements with keys in an interval [a,b]:

O(N) vs. O(log n + s), s is the size of output
� Depending on what kind of operations you will need

to perform on the data and whether you need
guaranteed performance on each query, you should
choose which implementation to use.

CMPT 225

Graphs

Graph Terminology

� A graph consists of two sets
� A set V of vertices (or nodes) and
� A set E of edges that connect vertices
� |V| is the size of V, |E| the size of E

� A path (walk) between two vertices is a sequence of
edges that begins at one vertex and ends at the
other
� A simple path (path) is one that does not pass

through the same vertex more than once
� A cycle is a path that begins and ends at the same

vertex

Connected Graphs
� A connected graph is one

where every pair of distinct
vertices has a path between
them

� A complete graph is one
where every pair of vertices
has an edge between them

� A graph cannot have multiple
edges between the same pair
of vertices

� A graph cannot have loops
[a loop = an edge from and to
the same vertex]

connected
graph

complete
graph

disconnected
graph

Directed Graphs

� In a directed graph (or
digraph) each edge has a
direction and is called a
directed edge

� A directed edge can only be
traveled in one direction

� A pair of vertices in a digraph
can have two edges between
them, one in each direction

directed graph

Weighted Graphs

� In a weighted graph each
edge is assigned a weight
� Edges are labeled with their

weights
� Each edge’s weight

represents the cost to travel
along that edge
� The cost could be distance,

time, money or some other
measure

� The cost depends on the
underlying problem

weighted graph

13

2
4

3

1

3

52
2

Graph Theory and Euler

� The Swiss mathematician Leonhard Euler invented
graph theory in the 1700’s
� One problem he solved (in 1736) was the Konigsberg

bridge problem
� Konigsberg was a city in Eastern Prussia which had

seven bridges in its centre
� Konigsberg was renamed Kalinigrad when East Prussia

was divided between Poland and Russia in 1945
� The inhabitants of Konigsberg liked to take walks and see if

it was possible to cross each bridge once and return to
where they started

� Euler proved that it was impossible to do this, as part of
this proof he represented the problem as a graph

Konigsberg

Konigsberg Graph

Multigraphs

� The Konigsberg
graph is an
example of a
multigraph

� A multigraph has
multiple edges
between the same
pair of vertices

� In this case the
edges represent
bridges

Graph Uses

� Graphs are used as representations of many
different types of problems
� Network configuration
� Airline flight booking
� Pathfinding algorithms
� Database dependencies
� Task scheduling
� Critical path analysis
� Garbage collection in Java
� etc.

Basic Graph Operations

� Create an empty graph
� Test to see if a graph is empty
� Determine the number of vertices in a graph
� Determine the number of edges in a graph
� Determine if an edge exists between two vertices

� and in a weighted graph determine its weight
� Insert a vertex

� each vertex is assumed to have a distinct search key
� Delete a vertex, and its associated edges
� Delete an edge
� Return a vertex with a given key

Graph Implementation

� There are two common implementation of graphs
� Both implementations require to map a vertex (key) to an

integer 0..|V|-1. For simplicity, we will assume that vertices
are integers 0..|V|-1 and cannot be added or deleted.

� The implementations record the set of edges differently

� Adjacency matrices provide fast lookup of
individual edges but waste space for sparse graphs

� Adjacency lists are more space efficient for sparse
graphs and find all the vertices adjacent to a given
vertex efficiently

Adjacency Matrix

� The edges are recorded in an |V| * |V| matrix
� In an unweighted graph entries in matrix[i][j] are

� 1 when there is an edge between vertices i and j or
� 0 when there is no edge between vertices i and j

� In a weighted graph entries in matrix[i][j] are either
� the edge weight if there is an edge between vertices i and j or
� infinity when there is no edge between vertices i and j

� Looking up an edge requires O(1) time
� Finding all vertices adjacent to a given vertex requires O(|V|) time
� The matrix requires |V|2 space

Adjacency Matrix Examples

0110110G

1000001F

1000110E

0000001D

1010011C

1010101B

0101110A

GFEDCBA

BA C

D E

GF

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞42∞∞∞∞G

8∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞F

3∞∞∞∞∞∞∞∞∞∞∞∞2∞∞∞∞∞∞∞∞E

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞1D

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞15C

∞∞∞∞∞∞∞∞2∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞B

∞∞∞∞5∞∞∞∞3∞∞∞∞1∞∞∞∞A

GFEDCBA

BA C

D E

GF

4

1

5

8

2

2
5

11

3 2

3

Implementation with adjacency matrix
class Graph {

// simple graph (no multiple edges); undirected; un weighted
private int numVertices;
private int numEdges;

private boolean[][] adjMatrix;

public Graph(int n) {
numVertices = n;
numEdges = 0;
adjMatrix = new boolean[n][n];

} // end constructor

public int getNumVertices() {
return numVertices;

} // end getNumVertices

public int getNumEdges() {
return numEdges;

} // end getNumEdges

public boolean isEdge(int v, int w) {
return adjMatrix[v][w];

} // end isEdge

public void addEdge(int v, int w) {
if (!isEdge(v,w)) {

adjMatrix[v][w] = true;
adjMatrix[w][v] = true;
numEdges++;

}
} // end addEdge

public void removeEdge(int v, int w) {
if (isEdge(v,w)) {

adjMatrix[v][w] = false;
adgMatrix[w][v] = false;
numEdges--;

}
} // end removeEdge

public int nextAdjacent(int v, int w)
// if w<0, return the first adjacent vertex
// otherwise, return next one after w
// if none exist, return -1
{
for (int i=w+1; i<numVertices; i++)
if (isEdge(v,i))
return i;

return -1;
}

} // end Graph

