
Hashing with Separate Chaining 
Implementation – data members
public class SCHashTable<T extends KeyedItem> 
implements HashTableInterface<T>
{  
private List<T>[] table;

private int h( long key) // hash function
// return index
{
return ( int)(key % table.length); // typecast to int

}

public SCHashTable( int size)
// recommended size: prime number roughly twice big ger
//                   than the expected number of el ements
{

table = new List[size];
// initialize the lists
for ( int i=0; i<size; i++)

table[i] = new List<T>(); 
}



Implementation – insertion
public void insert(T item)

{

int index = h(item.getKey());

List<T> L = table[index];

// insert item to L

L.add(1,item); // if linked list is used, 

// insertion will be efficient

}



Implementation – search
private int findIndex(List<T> L, long key)

// search for item with key 'key' in L
// return -1 if the item with key 'key' was not fou nd in L
{

// search of item with key = 'key'
for ( int i=1; i<=L.size(); i++)
if (L.get(i).getKey() ==  key)
return i;

return -1; // not found
}

public T find( long key)
{
int index = h(key);
List<T> L = table[index];
int list_index = findIndex(L,key);
if (index>=0)
return L.get(list_index);

else
return null; // not found

}



Implementation – deletion
public T delete( long key)

{

int index = h(key);

List<T> L = table[index];

int list_index = findIndex(L,key);

if (index>=0) {

T item = L.get(list_index);

L.remove(list_index);

return item;

} else

return null; // not found    

}



Figure: The relative efficiency of four collision-resolution methods

Hashing – comparison of different 
methods



Comparing hash tables and 
balanced BSTs

� With good hash function and load kept low, hash 
tables perform insertions, deletions and search in 
O(1) time on average, while balanced BSTs in O(log
n) time.

� However, there are some tasks (order related) for 
which, hash tables are not suitable:
� traversing elements in sorted order: O(N+n.log n) vs. O(n)
� finding minimum or maximum element: O(N) vs. O(1)
� range query: finding elements with keys in an interval [a,b]: 

O(N) vs. O(log n + s), s is the size of output
� Depending on what kind of operations you will need 

to perform on the data and whether you need 
guaranteed performance on each query, you should 
choose which implementation to use.
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Graph Terminology

� A graph consists of two sets
� A set V of vertices (or nodes) and
� A set E of edges that connect vertices
� |V| is the size of V, |E| the size of E

� A path (walk) between two vertices is a sequence of 
edges that begins at one vertex and ends at the 
other
� A simple path (path) is one that does not pass 

through the same vertex more than once
� A cycle is a path that begins and ends at the same 

vertex



Connected Graphs
� A connected graph is one 

where every pair of distinct 
vertices has a path between 
them

� A complete graph is one 
where every pair of vertices 
has an edge between them

� A graph cannot have multiple 
edges between the same pair 
of vertices

� A graph cannot have loops 
[a loop = an edge from and to 
the same vertex]
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Directed Graphs

� In a directed graph (or 
digraph) each edge has a 
direction and is called a 
directed edge

� A directed edge can only be 
traveled in one direction

� A pair of vertices in a digraph 
can have two edges between 
them, one in each direction

directed graph



Weighted Graphs

� In a weighted graph each 
edge is assigned a weight
� Edges are labeled with their 

weights
� Each edge’s weight 

represents the cost to travel 
along that edge
� The cost could be distance, 

time, money or some other 
measure

� The cost depends on the 
underlying problem
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Graph Theory and Euler

� The Swiss mathematician Leonhard Euler invented 
graph theory in the 1700’s
� One problem he solved (in 1736) was the Konigsberg 

bridge problem 
� Konigsberg was a city in Eastern Prussia which had 

seven bridges in its centre
� Konigsberg was renamed Kalinigrad when East Prussia 

was divided between Poland and Russia in 1945
� The inhabitants of Konigsberg liked to take walks and see if 

it was possible to cross each bridge once and return to 
where they started

� Euler proved that it was impossible to do this, as part of 
this proof he represented the problem as a graph



Konigsberg



Konigsberg Graph



Multigraphs

� The Konigsberg 
graph is an 
example of a 
multigraph

� A multigraph has 
multiple edges 
between the same 
pair of vertices

� In this case the 
edges represent 
bridges



Graph Uses

� Graphs are used as representations of many 
different types of problems
� Network configuration
� Airline flight booking
� Pathfinding algorithms
� Database dependencies
� Task scheduling
� Critical path analysis
� Garbage collection in Java
� etc.



Basic Graph Operations 

� Create an empty graph
� Test to see if a graph is empty
� Determine the number of vertices in a graph
� Determine the number of edges in a graph
� Determine if an edge exists between two vertices

� and in a weighted graph determine its weight
� Insert a vertex 

� each vertex is assumed to have a distinct search key
� Delete a vertex, and its associated edges
� Delete an edge
� Return a vertex with a given key



Graph Implementation

� There are two common implementation of graphs
� Both implementations require to map a vertex (key) to an 

integer 0..|V|-1. For simplicity, we will assume that vertices 
are integers 0..|V|-1 and cannot be added or deleted.

� The implementations record the set of edges differently

� Adjacency matrices provide fast lookup of 
individual edges but waste space for sparse graphs

� Adjacency lists are more space efficient for sparse 
graphs and find all the vertices adjacent to a given 
vertex efficiently



Adjacency Matrix

� The edges are recorded in an |V| * |V| matrix
� In an unweighted graph entries in matrix[i][j] are 

� 1 when there is an edge between vertices i and j or
� 0 when there is no edge between vertices i and j

� In a weighted graph entries in matrix[i][j] are either
� the edge weight if there is an edge between vertices i and j or
� infinity when there is no edge between vertices i and j

� Looking up an edge requires O(1) time
� Finding all vertices adjacent to a given vertex requires O(|V|) time
� The matrix requires |V|2 space



Adjacency Matrix Examples

0110110G

1000001F

1000110E

0000001D

1010011C

1010101B

0101110A

GFEDCBA

BA C

D E

GF

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞42∞∞∞∞G

8∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞F

3∞∞∞∞∞∞∞∞∞∞∞∞2∞∞∞∞∞∞∞∞E

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞1D

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞15C

∞∞∞∞∞∞∞∞2∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞B

∞∞∞∞5∞∞∞∞3∞∞∞∞1∞∞∞∞A
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Implementation with adjacency matrix
class Graph {

// simple graph (no multiple edges); undirected; un weighted
private int numVertices;
private int numEdges;

private boolean[][] adjMatrix;

public Graph( int n) {
numVertices = n;
numEdges = 0;
adjMatrix = new boolean[n][n];

} // end constructor

public int getNumVertices() {
return numVertices;

} // end getNumVertices

public int getNumEdges() {
return numEdges;

} // end getNumEdges

public boolean isEdge( int v, int w) {
return adjMatrix[v][w];

} // end isEdge



public void addEdge( int v, int w) {
if (!isEdge(v,w)) {

adjMatrix[v][w] = true;
adjMatrix[w][v] = true;
numEdges++;

}
} // end addEdge

public void removeEdge( int v, int w) {
if (isEdge(v,w)) {

adjMatrix[v][w] = false;
adgMatrix[w][v] = false;
numEdges--;

}
} // end removeEdge

public int nextAdjacent( int v, int w)
// if w<0, return the first adjacent vertex
// otherwise, return next one after w
// if none exist, return -1
{
for ( int i=w+1; i<numVertices; i++)
if (isEdge(v,i))
return i;

return -1;
}

} // end Graph


