
Implementation of Linear
Probing (continued)
� Helping method for locating index:
private int findIndex(long key)
// return -1 if the item with key 'key' was not fou nd
{
int index = h(key);
int probe = index;
int k = 1; // probe number
do {
if (table[probe]== null) {

// probe sequence has ended
break;

}
if (table[probe].getKey()==key)
return probe;

probe = (index + step(k)) % table.length; // check next slot
k++;

} while (probe!=index);

return -1; // not found
}

Implementation of Linear
Probing (continued)
� Find and Deleting the item:
public T find(long key)

{

int index = findIndex(key);

if (index>=0)

return (T) table[index];

else

return null; // not found

}

public T delete(long key)

{

int index = findIndex(key);

if (index>=0) {

T item = (T) table[index];

table[index] = AVAILABLE; // mark available

return item;

} else

return null; // not found

}

Open addressing:
Quadratic Probing
� Designed to prevent primary clustering.
� It does this by increasing the step by increasingly large amounts

as more probes are required to insert a record. This prevents
clusters from building up.
� In quadratic probing the step is equal to the square of the probe

number.
� With linear probing the step values for a sequence of probes

would be {1, 2, 3, 4, etc}. For quadratic probing the step values
would be {1, 22, 32, 42, etc}, i.e. {1, 4, 9, 16, etc}.

� Disadvantage of this method:
� After a number of probes the sequence of steps repeats itself

(remember that the step will be probe number2 mod the size of
the hash table). This repetition occurs when the probe number is
roughly half the size of the hash table.

� Secondary clustering .

Open addressing:
Quadratic Probing

� Disadvantage of this method:
� After a number of probes the sequence of steps repeats

itself. => It fails to insert a new item even if there is still a
space in the array.

� Secondary clustering: the sequence of probe steps is the
same for any insertion. Secondary clustering refers to the
increase in the probe length (that is the number of probes
required to find a record) for records where collisions have
occurred (the keys are mapped to the same value). Note
that this is not as large a problem as primary clustering.

� However, it is important to realize that in practice these two issues
are not significant, given a large hash table and a good hash
function it is extremely unlikely that these issues will affect the
performance of the hash table, unless it becomes nearly full.

Figure: Quadratic probing with h(x) = x mod 101

Implementation

� It’s enough to modify the step helping
method:

private int step(int k) // step function

{

return k*k // quadratic probing

}

Open addressing:
Double Hashing

� Double hashing aims to avoid both primary and
secondary clustering and is guaranteed to find a
free element in a hash table as long as the table is
not full. It achieves these goals by calculating the
step value using a second hash function h’.

step(k) = k.h’(key)

� This new hash function h’ should:
� be different from the original hash function (remember that

it was the original hash function that resulted in the collision
in the first place) and,

� not result in zero (as original index + 0 = original index)

Open addressing:
Double Hashing

� The second hash function is usually chosen as
follows:

h’(key) = q – (key%q),
where q is a prime number q<N (N is the size of the
array).

� Remark : It is important that the size of the hash table is a
prime number if double hashing is to be used. This
guarantees that successive probes will (eventually) try every
index in the hash table before an index is repeated (which
would indicate that the hash table is full).
� For other hashings (and for q) we want to use prime

numbers to eliminate existing patterns in the data.

Figure: Double hashing during the insertion of 58, 14, and 91

Double Hashing –
Implementation
public class DoubleHashTable<T extends KeyedItem>
implements HashTableInterface<T>
{
private KeyedItem[] table;
// special values: null = EMPTY, T with key=0 = AVA ILABLE
private static KeyedItem AVAILABLE = new KeyedItem(0);
private int q; // should be a prime number

public DoubleHashTable(int size, int q)
// size: should be a prime number;
// recommended roughly twice bigger
// than the expected number of elements
// q: recommended to be a prime number, should be s maller
than size

{
table = new KeyedItem[size];
this.q=q;

}

Double Hashing –
Implementation
private int h(long key) // hash function

// return index
{

return (int)(key % table.length); // typecast to int
}

private int hh(long key) // second hash function
// return step multiplicative constant
{

return (int)(q - key%q);
}

private int step(int k, long key) // step function
{

return k*hh(key);
}

Double Hashing –
Implementation
� Call step(k,item.getKey()) instead of step(k)

public void insert(T item) throws HashTableFullException
{
int index = h(item.getKey());
int probe = index;
int k = 1;
do {
if (table[probe]== null || table[probe]==AVAILABLE) {

// this slot is available
table[probe] = item;
return;

}
probe = (index + step(k,item.getKey())) % table.len gth; // check

next slot
k++;

} while (probe!=index);
throw new HashTableFullException("Hash table is full.");

}

Open addressing performance

� The performance of a hash table depends on the
load factor of the table.

� The load factor α is the ratio of the number of data
items to the size of the array.

� Of the three types of open addressing double
hashing gives the best performance.

� Overall, open addressing works very well up to load
factors of around 0.5 (when 2 probes on average
are required to find a record). For load factors
greater than 0.6 performance declines dramatically.

Rehashing

� If the load factor goes over the safe limit, we
should increase the size of the hash table (as
for dynamic arrays). This process is called
rehashing .

� Comments:
� we cannot just double the size of the table, as the

size should be a prime number;
� it will change the main hash function
� it’s not enough to just copy items

� Rehashing will take time O(N)

Dealing with Collisions (2 nd

approach): Separate Chaining

� In separate chaining the hash table consists
of an array of lists .

� When a collision occurs the new record is
added to the list.

� Deletion is straightforward as the record can
simply be removed from the list.

� Finally, separate chaining is less sensitive to
load factor and it is normal to aim for a load
factor of around 1 (but it will work also for
load factors over 1).

Figure: Separate chaining (using linked lists).
If array-based implementation of list is used: they are called buckets .

