
Using arrays – Example 2: 
names as keys

� How do we map strings to integers?  
� One way is to convert each letter to a number, either by 

mapping them to 0-25 or their ASCII characters or some 
other method and concatenating those numbers. 

� So how many possible arrangements of letters are there 
for names with a maximum of (say) 10 characters?  The 
first letter can be one of 26 letters.  Then for each of these 
26 possible first letters there are 26 possible second letters 
(for a total of 26* 26 or 262 arrangements).  With ten letters 
there are 2610 possible strings, i.e. 141,167,095,653,376 
possible keys!



So far this approach (of converting the key to an integer which is then used as an 
index to an array whose size is equal to the largest possible integer key) is not 
looking very promising.  What would be more useful would be to pick the size of 
the array we were going to use (based on how many customers, or citizens, or 
items we think we want to keep track of) and then somehow map the keys to the
array indices 
(which would 
range from 0 to 
our array size-1).  
This map is 
called a hash 
function .

Hash function: 
mapping key to index



Hash Table
� A hash table consists of 

� an array to store data in and 
� a hash function to map a key an array index.  

� We can assume that the array will contain references to objects of 
some data structure. This data structure will contain a number of 
attributes, one of which must be a key value used as an index into the 
hash table.  We’ll assume that we can convert the key to an integer in 
some way. We can map that to an array index using the modulo (or
remainder) function:

� Simple hash function: h(key) = key % array_size where h(key)
is the hash value (array index) and % is the modulo operator.

� Example: using a customer phone number as the key, assume 
that there are 500 customer records and that we store them in an
array of size 1,000.  A record with a phone number of 604-555-
1987 would be mapped to array element 987 (6,045,551,987 % 
1,000 = 987).



A problem – collisions
� Let’s assume that we make the array size (roughly) double the 

number of values to be stored in it.
� This a common approach (as it can be shown that this size is 

minimal possible for which hashing will work efficiently).
� We now have a way of mapping a numeric key to the range of 

array indices.  

� However, there is no guarantee that two records (with different 
keys) won’t map to the same array element (consider the phone 
number 512-555-7987 in the previous example).  When this 
happens it is termed a collision .  

� There are two issues to consider concerning collisions: 
� how to minimize the chances of collisions occurring and 
� what to do about them when they do occur.



Figure: A collision



Minimizing Collisions by Determining a 
Good Hash Function

� A good hash function will reduce the probability of collisions
occurring, while a bad hash function will increase it.  Let’s look at 
an example of a bad hash function first to illustrate some of the 
issues.

� Example: Suppose I want to store a few hundred English words 
in a hash table.  I create an array of 262 (676) and map the words 
based on the first two letters in the word.  So, for example the
word “earth” might map to index 104 (e=4, a=0; 4*26 + 0 = 104) 
and a word beginning with “zz” would map to index 675 (z = 
25*26 + 25 = 675).
� Problem: The flaw with this scheme is that the universe of 

possible English words is not uniformly distributed across the 
array. There are many more words beginning with “ea” or “th”
than there are with “hh” or “zz”.  So this scheme would probably 
generate many collisions while some positions in the array would
be never used.

� Remember this is an example of a bad hash function!



A Good Hash Function
� First, it should be fast to compute. 
� A good hash function should result in each key being equally 

likely to hash to any of the array elements. Or other way round:
each index in the array should have same probability to be 
mapped an item (considering the distribution of possible datas).
� Well, the best function would be a random function, but that 

doesn’t work: we would be not able to find an element once we 
store it in the table, i.e.
the function has to return the same index each time it is a called 
on the same key.

� To achieve this it is usual to determine the hash value so that it is 
independent of any patterns that exist in the data.  In the 
example above the hash value is dependent on patterns in the 
data, hence the problem.



A Good Hash Function
� Independent hash function:

� Express the key as an integer (if it isn’t already one), called 
hash value or hash code .  When doing so remove any 
non-data (e.g. for a hash table of part numbers where all 
part numbers begin with ‘P’, there is don’t to include the ‘P’
as part of the key), otherwise base the integer on the 
entire key .

� Use a prime number as the size of the array (independent 
from any constants occurring in data). 

� There are other ways of computing hash functions, 
and much work has been done on this subject, 
which is beyond the scope of this course.



How do we map string key to 
hash code?

� How do we map strings to integers?  
� Convert each letter to a number, either by mapping them to 

0-25 or their ASCII characters or some other method.
� Concatenating those values to one huge integer is not very 

efficient (or if the values are let to overflow, most likely we 
would just ignore the most of the string).

� Summing the number doesn’t work well either (‘stop’, 
‘tops’, ‘pots’, ‘spot’)

� Use polynomial hash codes:
x0a

k-1+x1a
k-2+…+xk-2a+xk-1,

where a is a prime number (33,37,39,41 works best for 
English words) [remark: and let it overflow]



Hashing summary

� Determine the size m of the hash table’s underlying 
array. The size should be:
� approximately twice the size of the expected number of 

records and
� a prime number , to evenly distribute items over the table.

� Express the key as the integer such that it depends 
on the entire key.

� Map the key to the hash table index by calculating 
the remainder of the key, k, divided by the size of 
the hash table m: h(k) = k mod m.



Dealing with collisions

� Even though we can reduce collisions by 
using a good hash function they will still 
occur.  

� There are two main approaches of dealing 
with collisions:
� The first is to find somewhere else to insert an 

item that has collided (open addressing) ;
� the second is to make the hash table an array of 

linked lists (separate chaining) .



Open Addressing

� The idea behind open addressing is that when a 
collision occurs the new value is inserted in a 
different index in the array.  

� This has to be done in a way that allows the value to 
be found again.

� We’ll look at three separate versions of open 
addressing.  In each of these versions, the “step”
value is a distance from the original index calculated 
by the hash function.
� The original index plus the step gives the new index to 

insert a record at if a collision occurs. 



Open addressing: 
Linear Probing
� the simplest method
� In linear probing the step increases by one each time an 

insertion fails to find space to insert a record:
� So, when a record is inserted in the hash table, if the array 

element that it is mapped to is occupied we look at the next 
element.  If that element is occupied we look at the next one, and 
so on.

� Disadvantage of this method: sequences of occupied elements 
build up making the step values larger (and insertion less 
efficient); this problem is referred to as primary clustering (“The 
rich gets richer”) .

� Clustering tends to get worse as the hash table fills up (has many 
elements – more than ½ full).  This means that more 
comparisons (or probes) are required to look up items, or to 
insert and delete items, reducing the efficiency of the hash table. 



Figure: Linear probing with h(x) = x mod 101

7496



Implementation

� Insertion: described on previous slides
� Searching: it’s not enough to look in the hash array 

at index where the key (hash code) was mapped, 
but we have to continue “probing” until we find either 
the element with the searched key or an empty spot 
(“not found”)

� Deleting: We cannot just make a spot empty, as we 
could interrupt a probe sequence. Instead we mark 
it AVAILABLE, to indicate that the spot can be used 
for insertion, but searching should continue when 
AVAILABLE spot is encountered.



Implementation
� Interface:
public interface HashTableInterface<T extends KeyedItem> {

public void insert(T item) throws HashTableFullException;
// PRE: item.getKey()!=0

public T find( long key);
// PRE: item.getKey()!=0

// return null if the item with key 'key' was not f ound
public T delete( long key);

// PRE: item.getKey()!=0
// return null if the item with key 'key' was not f ound

}



Implementation
� Data members and helping methods:
public class HashTable<T extends KeyedItem> 
implements HashTableInterface<T>
{  
private KeyedItem[] table;
// special values: null = EMPTY, T with key=0 = AVA ILABLE
private static KeyedItem AVAILABLE = new KeyedItem(0);

private int h( long key) // hash function
// return index
{ return ( int)(key % table.length); } // typecast to int

private int step( int k) // step function
{ return k; } // linear probing

public HashTable( int size)
{ table = new KeyedItem[size]; }



Implementation
� Insertion:
public void insert(T item) throws HashTableFullException

{
int index = h(item.getKey());
int probe = index;
int k = 1; // probe number
do {
if (table[probe]== null || table[probe]==AVAILABLE) {

// this slot is available
table[probe] = item;
return;

}
probe = (index + step(k)) % table.length; // check next slot
k++;

} while (probe!=index);
throw new HashTableFullException( "Hash table is full." );

}


