
Sorting with Heaps

� Observation: Removal of the largest item from a
heap can be performed in O(log n) time

� Another observation: Nodes are removed in order
� Conclusion: Removing all of the nodes one by one

would result in sorted output
� Analysis: Removal of all the nodes from a heap is a

O(n*logn) operation

But …

� A heap can be used to return sorted data
� in O(n*log n) time

� However, we can’t assume that the data to
be sorted just happens to be in a heap!
� Aha! But we can put it in a heap.
� Inserting an item into a heap is a O(log n)

operation so inserting n items is O(n*log n)

� But we can do better than just repeatedly
calling the insertion algorithm

Heapifying Data

� To create a heap from an unordered array
repeatedly call bubbleDown
� bubbleDown ensures that the heap property is preserved

from the start node down to the leaves
� it assumes that the only place where the heap property can

be initially violated is the start node; i.e., left and right
subtrees of the start node are heaps

� Call bubbleDown on the upper half of the array
starting with index n/2-1 and working up to index 0
(which will be the root of the heap)

� bubbleDown does not need to be called on the
lower half of the array (the leaves)

BubbleDown algorithm
(part of deletion algorithm)
public void bubbleDown(int i)
// element at position i might not satisfy the heap property
// but its subtrees do -> fix it
{
T item = items[i];
int current = i; // start at root
while (left(current) < num_items) { // not a leaf
// find a bigger child
int child = left(current);
if (right(current) < num_items &&

items[child].getKey() <
items[right(current)].getKey()) {

child = right(current);
}
if (item.getKey() < items[child].getKey()) {
items[current] = items[child]; // move its value up
current = child;

} else
break;

}
items[current] = item;

}

Heapify Example
89

2329

36 48

27 70

94 13

76 37 42 58

Assume unsorted input is
contained in an array as
shown here (indexed from
top to bottom and left
to right)

0

1 2

3 54

58

9423 13

27 37 4270 76

Heapify Example
89

2329

36 48

n = 12, n-1/2 = 5
bubbleDown(5)
bubbleDown(4)
bubbleDown(3)
bubbleDown(2)
bubbleDown(1)
bubbleDown(0)

94
0

1 2

3 54

note: these changes are made in the underlying array

48

7670

36 23

58

9476

29

29

48

36 29

70

76

27 37

48

23

13

89

58

42

Heapify algorithm

void heapify()

{

for (int i=num_items/2-1; i>=0; i--)

bubbleDown(i);

}

� Why is it enough to start at position
num_items/2 – 1?

Cost to Heapify an Array

� bubbleDown is called on half the array
� The cost for bubbleDown is O(height)
� It would appear that heapify cost is O(n*logn)

� In fact the cost is O(n)
� The exact analysis is complex (and left for

another course)

HeapSort Algorithm Sketch

� Heapify the array
� Repeatedly remove the root

� At the start of each removal swap the root with
the last element in the tree

� The array is divided into a heap part and a sorted
part

� At the end of the sort the array will be sorted
(since we have max heap, we put the largest
element to the end, etc.)

HeapSort
� assume BubbleDown is static and it takes the array on which it works and the

number of elements of the heap as parameters
public static void bubbleDown(KeyedItem ar[],int

num_items,int i)
// element at position i might not satisfy the heap
property
// but its subtrees do -> fix it

� heap sort:
public static void HeapSort(KeyedItem ar[])
{

// heapify - build heap out of ar
int num_items = ar.length;
for (int i=num_items/2-1; i>-0; i--)

bubbleDown(ar,num_items,i);

for (int i=0; i<ar.length-1; i++) {// do it n-1 times
// extract the largest element from the heap
swap(ar,0,num_items-1);
num_items--;
// fix the heap property
bubbleDown(ar,num_items,0);

}
}

HeapSort Notes

� The algorithm runs in O(n*log n) time
� Considerably more efficient than selection sort

and insertion sort
� The same (O) efficiency as mergeSort and

quickSort

� The sort is carried out “in-place”
� That is, it does not require that a copy of the array

to be made (memory efficient!) – quickSort has a
similar property, but not mergeSort

CMPT 225

Hash Tables

Is balanced BST efficient
enough?

� What drives the need for hash tables given the existence of
balanced binary search trees?:
� support relatively fast searches (O (log n)), insertion and deletion
� support range queries (i.e. return information about a range of

records, e.g. “find the ages of all customers whose last name
begins with ’S’”)

� are dynamic (i.e. the number of records to be stored is not fixed)
� But note the “relatively fast searches”. What if we want to make

many single searches in a large amount of data? If a BST
contains 1,000,000 items then each search requires around log2
1,000,000 = 20 comparisons.

� If we had stored the data in an array and could (somehow) know
the index (based on the value of the key) then each search would
take constant (O(1)) time, a twenty-fold improvement.

Using arrays

� If the data have conveniently distributed keys that range from 0
to the some value N with no duplicates then we can use an array:
� An item with key K is stored in the array in the cell with index K.
� Perfect solution: searching, inserting, deleting in time O(1)
� Drawback: N is usually huge (sometimes even not bounded) – so

it requires a lot of memory.

� Unfortunately this is often the case. Examples: we want to look
people up by their phone numbers, or SINs, or names.

� Let’s look at these examples.

Using arrays – Example 1:
phone numbers as keys
� For phone numbers we can assume that the values range

between 000-000-0000 and 999-999-9999 (in Canada). So let’s
see how big an array has to be to store all the possible numbers.
It’s easy to map phone numbers to integers (keys), just get rid of
the ‘-‘s. So we have a range from 0 to 9,999,999,999. So we’d
need an array of size 10 billion. There are two problems here:
� The first is that you won’t fit the array in main memory. A PC with

2GB of RAM can store only 536,870,912 references (assuming
each reference takes only 4 bytes) which is clearly insufficient.
Plus we have to store actual data somewhere.
(We could store the array on the hard drive, but it would require
40GB.)

� The other problem is that such an array would be horribly
wasteful. The population of Canada estimated in July 2004 is
32,507,874, so if we assume that that’s the approx. number of
phone numbers, there is a huge amount of wasted space.

