
Sorting with Heaps

� Observation: Removal of the largest item from a 
heap can be performed in O(log n) time

� Another observation: Nodes are removed in order
� Conclusion: Removing all of the nodes one by one 

would result in sorted output
� Analysis: Removal of all the nodes from a heap is a 

O(n*logn) operation



But …

� A heap can be used to return sorted data
� in O(n*log n) time

� However, we can’t assume that the data to 
be sorted just happens to be in a heap!
� Aha! But we can put it in a heap.
� Inserting an item into a heap is a O(log n) 

operation so inserting n items is O(n*log n) 

� But we can do better than just repeatedly 
calling the insertion algorithm 



Heapifying Data

� To create a heap from an unordered array 
repeatedly call bubbleDown
� bubbleDown ensures that the heap property is preserved 

from the start node down to the leaves
� it assumes that the only place where the heap property can 

be initially violated is the start node; i.e., left and right 
subtrees of the start node are heaps

� Call bubbleDown on the upper half of the array 
starting with index n/2-1 and working up to index 0 
(which will be the root of the heap)

� bubbleDown does not need to be called on the 
lower half of the array (the leaves) 



BubbleDown algorithm 
(part of deletion algorithm)
public void bubbleDown(int i) 
// element at position i might not satisfy the heap property
// but its subtrees do -> fix it 
{ 
T item = items[i];
int current = i; // start at root 
while (left(current) < num_items) { // not a leaf
// find a bigger child
int child = left(current);
if (right(current) < num_items && 

items[child].getKey() < 
items[right(current)].getKey()) { 

child = right(current); 
} 
if (item.getKey() < items[child].getKey()) { 
items[current] = items[child]; // move its value up 
current = child; 

} else
break;

} 
items[current] = item; 

}



Heapify Example
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Assume unsorted input is 
contained in an array as 
shown here (indexed from 
top to bottom and left 
to right)
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Heapify Example
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n = 12, n-1/2 = 5
bubbleDown(5)
bubbleDown(4)
bubbleDown(3)
bubbleDown(2)
bubbleDown(1)
bubbleDown(0)
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note: these changes are made in the underlying array
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Heapify algorithm

void heapify()

{

for (int i=num_items/2-1; i>=0; i--)

bubbleDown(i);

}

� Why is it enough to start at position 
num_items/2 – 1?



Cost to Heapify an Array

� bubbleDown is called on half the array
� The cost for bubbleDown is O(height)
� It would appear that heapify cost is O(n*logn)

� In fact the cost is O(n)
� The exact analysis is complex (and left for 

another course)



HeapSort Algorithm Sketch

� Heapify the array
� Repeatedly remove the root

� At the start of each removal swap the root with 
the last element in the tree

� The array is divided into a heap part and a sorted 
part

� At the end of the sort the array will be sorted 
(since we have max heap, we put the largest 
element to the end, etc.)



HeapSort
� assume BubbleDown is static and it takes the array on which it works and the 

number of elements of the heap as parameters
public static void bubbleDown(KeyedItem ar[],int

num_items,int i) 
// element at position i might not satisfy the heap 
property
// but its subtrees do -> fix it 

� heap sort:
public static void HeapSort(KeyedItem ar[])
{

// heapify - build heap out of ar
int num_items = ar.length;
for (int i=num_items/2-1; i>-0; i--)

bubbleDown(ar,num_items,i);

for (int i=0; i<ar.length-1; i++) {// do it n-1 times
// extract the largest element from the heap
swap(ar,0,num_items-1); 
num_items--;
// fix the heap property
bubbleDown(ar,num_items,0);

}
}



HeapSort Notes

� The algorithm runs in O(n*log n) time
� Considerably more efficient than selection sort 

and insertion sort
� The same (O) efficiency as mergeSort and 

quickSort

� The sort is carried out “in-place”
� That is, it does not require that a copy of the array 

to be made (memory efficient!) – quickSort has a 
similar property, but not mergeSort
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Hash Tables



Is balanced BST efficient 
enough?

� What drives the need for hash tables given the existence of 
balanced binary search trees?:
� support relatively fast searches (O (log n)), insertion and deletion
� support range queries (i.e. return information about a range of 

records, e.g. “find the ages of all customers whose last name 
begins with ’S’”)

� are dynamic (i.e. the number of records to be stored is not fixed)
� But note the “relatively fast searches”.  What if we want to make 

many single searches in a large amount of data?  If a BST 
contains 1,000,000 items then each search requires around log2
1,000,000 = 20 comparisons.  

� If we had stored the data in an array and could (somehow) know 
the index (based on the value of the key) then each search would
take constant (O(1)) time, a twenty-fold improvement.



Using arrays

� If the data have conveniently distributed keys that range from 0
to the some value N with no duplicates then we can use an array:
� An item with key K is stored in the array in the cell with index K.
� Perfect solution: searching, inserting, deleting in time O(1)
� Drawback: N is usually huge (sometimes even not bounded) – so 

it requires a lot of memory.

� Unfortunately this is often the case. Examples: we want to look 
people up by their phone numbers, or SINs, or names.

� Let’s look at these examples. 



Using arrays – Example 1: 
phone numbers as keys
� For phone numbers we can assume that the values range 

between 000-000-0000 and 999-999-9999 (in Canada).  So let’s 
see how big an array has to be to store all the possible numbers.  
It’s easy to map phone numbers to integers (keys), just get rid of 
the ‘-‘s.  So we have a range from 0 to 9,999,999,999.  So we’d 
need an array of size 10 billion.  There are two problems here:
� The first is that you won’t fit the array in main memory.  A PC with  

2GB of RAM can store only 536,870,912 references (assuming 
each reference takes only 4 bytes) which is clearly insufficient. 
Plus we have to store actual data somewhere.
(We could store the array on the hard drive, but it would require 
40GB.)

� The other problem is that such an array would be horribly 
wasteful. The population of Canada estimated in July 2004 is 
32,507,874, so if we assume that that’s the approx. number of 
phone numbers, there is a huge amount of wasted space.


