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Priority Queues and Heaps



Priority Queues

� Items in a priority queue have a priority
� The priority is usually numerical value
� Could be lowest first or highest first

� The highest priority item is removed first
� Priority queue operations

� Insert
� Remove in priority queue order (not a FIFO!)
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Implementing a Priority Queue

� Items have to be removed in priority order
� This can only be done efficiently if the items are 

ordered in some way
� A balanced binary search (e.g., red-black) tree is an 

efficient and ordered data structure but
� Some operations (e.g. removal) are complex to code
� Although operations are O(log n) they require quite a lot of 

structural overhead

� There is another binary tree solution – heaps
� Note: We will see that search/removal of the maximum 

element is efficient, but it’s not true for other elements



Heaps
� A heap is binary tree with two properties
� Heaps are complete

� All levels, except the bottom, must be completely filled in
� The leaves on the bottom level are as far to the left as 

possible.

� Heaps are partially ordered (“heap property”):
� The value of a node is at least as large as its chi ldren’s 

values, for a max heap or
� The value of a node is no greater than its children’s values, 

for a min heap



Complete Binary Trees

complete binary trees

incomplete binary trees



Partially Ordered Tree – max 
heap
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Note: an inorder traversal would result in:

9, 13, 10, 86, 44, 65, 23, 98, 21, 32, 17, 41, 29



Priority Queues and Heaps

� A heap can be used to implement a priority 
queue

� Because of the partial ordering property the 
item at the top of the heap must always the 
largest value

� Implement priority queue operations:
� Insertions – insert an item into a heap 
� Removal – remove and return the heap’s root
� For both operations preserve the heap property



Heap Implementation

� Heaps can be implemented 
using arrays

� There is a natural method of 
indexing tree nodes
� Index nodes from top to 

bottom and left to right as 
shown on the right (by levels)

� Because heaps are complete 
binary trees there can be no 
gaps in the array
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Array implementations of heap
public class Heap<T extends KeyedItem> {
private int HEAPSIZE=200; 
// max. number of elements in the heap
private T items[];        // array of heap items
private int num_items;    // number of items

public Heap() { 
items = new T[HEAPSIZE];
num_items=0;

}  // end default constructor

� We could also use a dynamic array implementation to get rid 
of the limit on the size of heap.

� We will assume that priority of an element is equal to its key. 
So the elements are partially sorted by their keys. They 
element with the biggest key has the highest priority.



Referencing Nodes

� It will be necessary to find the indices of the 
parents and children of nodes in a heap’s 
underlying array

� The children of a node i , are the array 
elements indexed at 2i +1 and 2i +2

� The parent of a node i, is the array element 
indexed at floor[(i–1)/2]



Helping methods

private int parent(int i)

{ return (i-1)/2; }

private int left(int i)

{ return 2*i+1; }

private int right(int i)

{ return 2*i+2; }



Heap Array Example
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Heap Insertion

� On insertion the heap properties have to be 
maintained; remember that
� A heap is a complete binary tree and
� A partially ordered binary tree

� There are two general strategies that could be used 
to maintain the heap properties
� Make sure that the tree is complete and then fix the 

ordering, or
� Make sure the ordering is correct first
� Which is better?



Heap Insertion algorithm

� The insertion algorithm first ensures that the 
tree is complete
� Make the new item the first available (left-most) 

leaf on the bottom level
� i.e. the first free element in the underlying array

� Fix the partial ordering
� Repeatedly compare the new value with its 

parent, swapping them if the new value is greater 
than the parent (for a max heap)

� Often called “bubbling up”, or “trickling up”



Heap Insertion Example
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Heap Insertion Example
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81 is less than 98 
so we are finished



Heap Insertion algorithm
public void insert(T newItem) {
// TODO: should check for the space first
num_items++;
int child = num_items-1;

while (child > 0 && 
item[parent(child)].getKey() <
newItem.getKey()) { 

items[child] = items[parent(child)];
child = parent(child); 

} 

items[child] = newItem; 
}



Heap Removal algorithm

� Make a temporary copy of the root’s data
� Similar to the insertion algorithm, ensure that the 

heap remains complete
� Replace the root node with the right-most leaf on the last 

level
� i.e. the highest (occupied) index in the array

� Repeatedly swap the new root with its largest valued 
child until the partially ordered property holds

� Return the root’s data



Heap Removal Example
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Heap Removal Example
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Heap Removal algorithm
public T remove() 
// remove the highest priority item
{ 
// TODO: should check for empty heap
T result = items[0]; // remember the item 
T item = items[num_items-1];
num_items--;
int current = 0; // start at root 
while (left(current) < num_items) { // not a leaf
// find a bigger child
int child = left(current);
if (right(current) < num_items && 

items[child].getKey() < items[right(current)].getKey()) { 
child = right(current); 

} 
if (item.getKey() < items[child].getKey()) { 
items[current] = items[child]; 
current = child; 

} else
break;

} 
items[current] = item; 
return result; 

}



Heap Efficiency

� For both insertion and removal the heap performs at 
most height swaps
� For insertion at most height comparisons
� For removal at most height*2 comparisons

� The height of a complete binary tree is given by 
log2(n)+1
� Both insertion and removal are O(logn)

Remark: but removal is only implemented for the 
element with the highest key!


