BST Search

e To find a value in a BST search from the root node:

e If the target is less than the value in the node search its left
Subtree

e If the target is greater than the value in the node search its
right subtree

e Otherwise return data, etc.
e If null value is reached, return null (“not found”).

e How many comparisons?
e One for each node on the path
e Worst case: height of the tree

BST Search Example
== 0
o ™

N
@ O

ke

N

Search algorithm (recursive)

T retrievelten(TreeNode<T extends Keyedltenr n, |ong searchKey)
/1l returns a node containing the itemw th the key searchKey
/1 or null if not found

{
if (n == null) {
return null ;
}
else {
if (searchKey == n.getltem().getKey()) {
[/ itemis in the root of sone subtree
return n.getltem();
}
else if (searchKey < n.getlten().getKey()) {
/] search the left subtree
return retrievelten(n.getlLeft(), searchKey);
}
else { // search the right subtree
return retrieveltemn.getRi ght(), searchKey);
} [/ end if
} // end if

} /] end retrieveltem

BST Insertion

e The BST property must hold after insertion

e Therefore the new node must be inserted In
the correct position
e This position is found by performing a search

e If the search ends at the (null) left child of a node
make Its left child refer to the new node

e If the search ends at the (null) right child of a
node make its right child refer to the new node

e The cost is about the same as the cost for
the search algorithm, O(height)

BST Insertion Example -

insert 43
create new node

find position ‘
insert new node

Avald

Insertion algorithm (recursive)

TreeNode<T> insertlten(TreeNode<T> n, T newlten)

/1
{

}

returns a reference to the new root of the subtree rooted in n

Tr eeNode<T> newSubt r ee;

if

}

(n == null) {

/1 position of insertion found; insert after |eaf

/]l create a new node

n = new TreeNode<T>(newtem null , null);
return n;
/[l end if

/| search for the insertion position

if

}

(newltem getKey() < n.getlten().getKey()) {
/'l search the left subtree

newSubtree = insertlten(n.getLeft(), newtem;
n. set Lef t (newSubtree) ;

return n;

else { // search the right subtree

}

newSubtree = insertltem(n.getRi ght(), newiten);
n. set Ri ght (newSubtree);

return n;

/'l end if

/!l end insertltem

BST Deletion

e After deleting a node the BST property must
still hold

e Deletion is not as straightforward as search
or insertion

e SO much so that sometimes it IS not even
Implemented!

e There are a number of different cases that
have to be considered

BST Deletion Cases

e The node to be deleted has no children
e Remove it (assign null to its parent’s reference)

e The node to be deleted has one child
e Replace the node with its subtree

e The node to be deleted has two children

e Replace the node with its predecessor = the right most
node of its left subtree (or with its successor, the left most
node of its right subtree)

e If that node has a child (and it can have at most one child)
attach that to the node’s parent

BST Deletion — target is a leaf ece’

lete 30

/\ /\

AV A

BST Deletion — target has one | s:3:-

child 31

ace Wil subiree ‘/Q\’
e o e
ﬁ/ PYS } 4

BST Deletion — target has one | .
child

T e e
o o

ater dele ‘/ \
AV A

BST Deletion — target has 2 cecee

se:
children oot
delete 32

find successor and detach ‘

/\ /\

AN

BST Deletion — target has 2 cecee

children et

delete 32
find successor

attach target node’s ‘
children to ‘/
successor
temp VRN

Y

BST Deletion — target has 2

children

delete 32
find successor

attach target node’s

children to

successor
make successor

child of
target’s
parent

.

c/\/' s
temp (

L

BST Deletion — target has 2 cecee

children et

delete 32

note: successor
had no subtree
temp / AN

Ry

BST Deletion — target has 2 cecee

0000
children ses
delete 63
find predecessor - note ‘

it has a subtree

/\ /\

Sesaes”

BST Deletion — target has 2 cecee

o000
o000

delete 63

find predecessor

f i i i temp

children ses
attach predecessor’s ‘

subtree to its

parent

BST Deletion — target has 2 cecee

children et

delete 63
find predecessor

attach subtree ‘ temp
attach target’s /
children to

predecessor

ﬁ S .

BST Deletion —target has 2 sels.

children et

delete 63
find predecessor

attach subtree ‘ temp
attach children /
attach predecssor

to target’s
parent

ﬁ Aé‘

Deletion algorithm — Phase 1.

Finding Node

Tr eeNode<T> del et el ten(TreeNode<T> n, long searchKey) {
/Il Returns a reference to the new root.
/1 Calls: del et eNode.
Tr eeNode<T> newSubtr ee;
if (n == null) {
throw new TreeException("TreeException: Item not found");
}
else {
if (searchKey==n.getlten().getKey()) {
/[l itemis in the root of sone subtree
n = del eteNode(n); // delete the node n
}
/'l else search for the item
else if (searchKey<n.getlten().getKey()) {
/| search the left subtree
newSubtree = deletelten(n.getLeft(), searchKey);
n. set Lef t (newSubtree) ;
}
else { // search the right subtree
newSubtree = del eteltem(n.getRi ght(), searchKey);
n. set Ri ght (newSubtr ee);
} // end if
} // end if
return n;
} [/ end deleteltem

