
BST Search

� To find a value in a BST search from the root node:
� If the target is less than the value in the node search its left

subtree
� If the target is greater than the value in the node search its

right subtree
� Otherwise return data, etc.
� If null value is reached, return null (“not found”).

� How many comparisons?
� One for each node on the path
� Worst case: height of the tree

1717

1313 2727

99 39391616

1111

2020

BST Search Example

click on a node
to show its value

Search algorithm (recursive)
T retrieveItem(TreeNode<T extends KeyedItem> n, long searchKey)
// returns a node containing the item with the key searchKey
// or null if not found
{

if (n == null) {
return null ;

}
else {

if (searchKey == n.getItem().getKey()) {
// item is in the root of some subtree
return n.getItem();

}
else if (searchKey < n.getItem().getKey()) {
// search the left subtree
return retrieveItem(n.getLeft(), searchKey);

}
else { // search the right subtree
return retrieveItem(n.getRight(), searchKey);

} // end if
} // end if

} // end retrieveItem

BST Insertion
� The BST property must hold after insertion
� Therefore the new node must be inserted in

the correct position
� This position is found by performing a search
� If the search ends at the (null) left child of a node

make its left child refer to the new node
� If the search ends at the (null) right child of a

node make its right child refer to the new node

� The cost is about the same as the cost for
the search algorithm, O(height)

BST Insertion Example

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

insert 43
create new node
find position
insert new node

43

43

Insertion algorithm (recursive)
TreeNode<T> insertItem(TreeNode<T> n, T newItem)
// returns a reference to the new root of the subtree rooted in n
{
TreeNode<T> newSubtree;
if (n == null) {
// position of insertion found; insert after leaf
// create a new node
n = new TreeNode<T>(newItem, null , null);
return n;

} // end if

// search for the insertion position
if (newItem.getKey() < n.getItem().getKey()) {
// search the left subtree
newSubtree = insertItem(n.getLeft(), newItem);
n.setLeft(newSubtree);
return n;

}
else { // search the right subtree
newSubtree = insertItem(n.getRight(), newItem);
n.setRight(newSubtree);
return n;

} // end if
} // end insertItem

BST Deletion

� After deleting a node the BST property must
still hold

� Deletion is not as straightforward as search
or insertion
� So much so that sometimes it is not even

implemented!

� There are a number of different cases that
have to be considered

BST Deletion Cases

� The node to be deleted has no children
� Remove it (assign null to its parent’s reference)

� The node to be deleted has one child
� Replace the node with its subtree

� The node to be deleted has two children
� Replace the node with its predecessor = the right most

node of its left subtree (or with its successor, the left most
node of its right subtree)

� If that node has a child (and it can have at most one child)
attach that to the node’s parent

BST Deletion – target is a leaf

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 30

BST Deletion – target has one
child

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 79
replace with subtree

BST Deletion – target has one
child

47

6332

19 41

10 23

7 12

54

37 44 53 59 96

30 57 91 97

delete 79
after deletion

BST Deletion – target has 2
children

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 32

temp

find successor and detach

BST Deletion – target has 2
children

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 32

37

temp

temp

find successor
attach target node’s

children to
successor

BST Deletion – target has 2
children

47

6332

19 41

10 23

7 12

54 79

44 53 59 96

30 57 91 97

delete 32

37

temp

find successor
attach target node’s

children to
successor

make successor
child of
target’s
parent

BST Deletion – target has 2
children

47

63

19 41

10 23

7 12

54 79

44 53 59 96

30 57 91 97

delete 32

37

temp

note: successor
had no subtree

BST Deletion – target has 2
children

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 63

temp

find predecessor - note
it has a subtree

Note: predecessor
used instead of
successor to show
its location - an
implementation
would have to pick
one or the other

BST Deletion – target has 2
children

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 63

temp

find predecessor
attach predecessor’s

subtree to its
parent

BST Deletion – target has 2
children

47

6332

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 63

59

temp

temp
find predecessor
attach subtree
attach target’s

children to
predecessor

BST Deletion – target has 2
children

47

6332

19 41

10 23

7 12

54 79

37 44 53 96

30 57 91 97

delete 63

59

temp
find predecessor
attach subtree
attach children
attach predecssor

to target’s
parent

BST Deletion – target has 2
children

47

32

19 41

10 23

7 12

54 79

37 44 53 96

30 57 91 97

delete 63

59

Deletion algorithm – Phase 1:
Finding Node
TreeNode<T> deleteItem(TreeNode<T> n, long searchKey) {
// Returns a reference to the new root.
// Calls: deleteNode.
TreeNode<T> newSubtree;
if (n == null) {
throw new TreeException("TreeException: Item not found");
}
else {

if (searchKey==n.getItem().getKey()) {
// item is in the root of some subtree
n = deleteNode(n); // delete the node n

}
// else search for the item
else if (searchKey<n.getItem().getKey()) {
// search the left subtree
newSubtree = deleteItem(n.getLeft(), searchKey);
n.setLeft(newSubtree);

}
else { // search the right subtree
newSubtree = deleteItem(n.getRight(), searchKey);
n.setRight(newSubtree);

} // end if
} // end if
return n;

} // end deleteItem

