
InOrder Traversal Algorithm

// InOrder traversal algorithm

inOrder(TreeNode<T> n) {

if (n != null) {

inOrder(n.getLeft());

visit(n)

inOrder(n.getRight());

}

}

Examples

� Iterative version of in-order traversal
� Option 1: using Stack
� Option 2: with references to parents in TreeNodes

� Iterative version of height() method

Binary Tree Implementation

� The binary tree ADT can be implemented using a
number of data structures
� Reference structures (similar to linked lists), as we have

seen
� Arrays – either simulating references or complete binary

trees allow for a special very memory efficient array
representation (called heaps)

� We will look at 3 applications of binary trees
� Binary search trees (references)
� Red-black trees (references)
� Heaps (arrays)

Problem: Design a data structure
for storing data with keys

� Consider maintaining data in some manner
(data structure)
� The data is to be frequently searched on the

search key e.g. a dictionary, records in database

� Possible solutions might be:
� A sorted array (by the keys)

� Access in O(log n) using binary search
� Insertion and deletion in linear time

� An sorted linked list
� Access, insertion and deletion in linear time

Dictionary Operations

� The data structure should be able to perform
all these operations efficiently
� Create an empty dictionary
� Insert
� Delete
� Look up (by the key)

� The insert, delete and look up operations
should be performed in O(log n) time

� Is it possible?

Data with keys
� For simplicity we will assume that keys are of type long, i.e.,

they can be compared with operators <, >, <=, ==, etc.
� All items stored in a container will be derived from KeyedItem.

public class KeyedItem
{

private long key;

public KeyedItem(long k)
{

key=k;
}
public getKey() {

return key;
}

}

Binary Search Trees (BSTs)

� A binary search tree is a binary tree with a
special property
� For all nodes v in the tree:

� All the nodes in the left subtree of v contain items
less than the item in v and

� All the nodes in the right subtree of v contain items
greater than or equal to the item in v

1717

1313 2727

99 39391616

1111

2020

BST Example

1717

1313 2727

99 39391616

1111

2020

BST InOrder Traversal

22

11

33

44 66

55

77

88

inOrder(n.leftChild)

visit(n)

inOrder(n.rightChild)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

Conclusion: in-Order traversal
of BST visit elements in order.

