InOrder Traversal Algorithm

/[l InOrder traversal algorithm
| NOr der (TreeNode<T> n) {
1f (n!=null) {
| NnOrder(n.getlLeft());
visit(n)
| NnOrder(n.getRight());

Examples

e Iterative version of in-order traversal
e Option 1: using Stack
e Option 2: with references to parents in TreeNodes

e |terative version of height() method

Binary Tree Implementation

e The binary tree ADT can be implemented using a
number of data structures

e Reference structures (similar to linked lists), as we have
seen

e Arrays — either simulating references or complete binary
trees allow for a special very memory efficient array
representation (called heaps)

e We will look at 3 applications of binary trees

e Binary search trees (references)

e Red-black trees (references)

e Heaps (arrays)

Problem: Design a data structure
for storing data with keys

e Consider maintaining data in some manner
(data structure)

e The data is to be frequently searched on the
search key e.g. a dictionary, records in database

e Possible solutions might be:

e A sorted array (by the keys)
Access in O(log n) using binary search
Insertion and deletion in linear time

e An sorted linked list
Access, Insertion and deletion in linear time

Dictionary Operations

e The data structure should be able to perform
all these operations efficiently

e Create an empty dictionary
e Insert

e Delete

e Look up (by the key)

e The insert, delete and look up operations
should be performed in O(log n) time

e IS it possible?

Data with keys

e For simplicity we will assume that keys are of type | ong, I.e.,
they can be compared with operators <, >, <=, ==, etc.

e All items stored in a container will be derived from Keyedltem.

public class Keyedltem

{

private |ong key;

public Keyedlten(long k)
{

}
public getKey() {

return key;

key=k;

}
}

Binary Search Trees (BSTs)

e A binary search tree Is a binary tree with a
special property
e For all nodes v in the tree:

All the nodes In the left subtree of v contain items
less than the item in v and

All the nodes in the right subtree of v contain items
greater than or equal to the itemin v

BST Example

()
N
G

@Q\ \

®

BST InOrder Traversal

i NnOrder(n.leftChild)
visit(n)

I nOrder(I)
3 visit
i nOrder(r)

inOrder(I)
1 visit 4 6 8
i nOrder(r)
in er(l) in er(l)

Vi sit

inOrder(r)

inOrder(I)
visit
inOrder(r)

| NnOrder(n.rightChild) /O

\ i narder (1)

7 Vi sit
inOrder(r)

N

in er(l)
visit visit
inOrder(r) i nOrder(r)

Conclusion: in-Order traversal
of BST visit elements in order.

