
InOrder Traversal Algorithm

// InOrder traversal algorithm

inOrder(TreeNode<T> n) {

if (n != null) {

inOrder(n.getLeft());

visit(n)

inOrder(n.getRight());

}

}



Examples

� Iterative version of in-order traversal
� Option 1: using Stack
� Option 2: with references to parents in TreeNodes

� Iterative version of height() method



Binary Tree Implementation

� The binary tree ADT can be implemented using a 
number of data structures
� Reference structures (similar to linked lists), as we have 

seen
� Arrays – either simulating references or complete binary 

trees allow for a special very memory efficient array 
representation (called heaps)

� We will look at 3 applications of binary trees
� Binary search trees (references)
� Red-black trees (references)
� Heaps (arrays)



Problem: Design a data structure 
for storing data with keys

� Consider maintaining data in some manner 
(data structure)
� The data is to be frequently searched on the 

search key e.g. a dictionary, records in database

� Possible solutions might be:
� A sorted array (by the keys)

� Access in O(log n) using binary search
� Insertion and deletion in linear time

� An sorted linked list
� Access, insertion and deletion in linear time



Dictionary Operations

� The data structure should be able to perform 
all these operations efficiently
� Create an empty dictionary
� Insert
� Delete
� Look up (by the key)

� The insert, delete and look up operations 
should be performed in O(log n) time

� Is it possible?



Data with keys
� For simplicity we will assume that keys are of type long, i.e., 

they can be compared with operators <, >, <=, ==, etc.
� All items stored in a container will be derived from KeyedItem.

public class KeyedItem
{

private long key;

public KeyedItem(long k)
{

key=k;
}
public getKey() {

return key;
}

}



Binary Search Trees (BSTs)

� A binary search tree is a binary tree with a 
special property
� For all nodes v in the tree:

� All the nodes in the left subtree of v contain items 
less than the item in v and

� All the nodes in the right subtree of v contain items 
greater than or equal to the item in v



1717

1313 2727

99 39391616

1111

2020

BST Example



1717

1313 2727

99 39391616

1111

2020

BST InOrder Traversal
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inOrder(n.leftChild)

visit(n)

inOrder(n.rightChild)
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Conclusion: in-Order traversal  
of BST visit elements in order.


