
Object Oriented Design

� An object combines data and operations on
that data (object is an instance of class)
� data: class variables
� operations: methods

� Three principles of Object Oriented Design
� Encapsulation – discussed earlier
� Inheritance – discussed later in the course
� Polymorphism – discussed later in the course

Object Design – Identify
Objects

� Identify objects
� Identify objects that exist in the problem statement and

requirements
� Typically, select nouns, ignoring irrelevant ones, such as

synonyms
� Look for relationships amongst the (real-world) objects that

were identified
� Generalization – relates to inheritance
� Containment – where one object contains another
� Multiplicity – determine the quantity relationships between

objects (e.g. one bank can have many accounts)

Object Design – Identify
Operations

� Identify the operations of objects
� Typically, select verbs, ignoring irrelevant

ones, such as actions performed by the user
� Associate each operation with the object that

is responsible for providing the behaviour
� Note that an object should be responsible for

modifying its own data

Object Design – Create
Interface
� An interface should be created for each object that is to be

represented by a class (rather than a variable)
� The interface describes how the class can be used, by

specifying its public operations
� There are a number of ways of creating interfaces, e.g.

� C++ Header files
� Java Interface

� An interface should include:
� Class invariants (conditions that must be true for an object)
� Public methods, for each such define:

� Parameter lists
� Return type
� Purpose (i.e. a description)
� Pre and post conditions

Class Invariants

� A class invariant is an invariant on the values of the
variables of an object, For example:
� Account balance is always >= 0
� Account ID numbers are unique and cannot be modified

� All object constructors and mutators should respect
class invariants
� That is, they should always make sure that class

invariants are true

Pre-Conditions

� A pre-condition is an assertion about conditions at the
beginning of a method
� An assertion is a statement about a condition

� It is part of the "contract" implicit in a method
� If the pre-conditions are not true then the method is not

guaranteed to produce the desired results
� e.g. for binary search, there is a pre-condition that the array or

list being searched is sorted, it is not, there is not guarantee
that the correct result will be returned

� Or, to put it another way, that the post-conditions will hold

Post-Conditions

� A post-condition is an assertion about conditions at
the end of a method
� The post-conditions describe the state after the method

has been run
� They therefore describe the desired output of a method

� To prove that an algorithm is correct we need to
prove that, if the pre-conditions are correct, following
the steps of the algorithm will lead to the post-
conditions
� We should be able to show how the each step of an

algorithm leads to the post-conditions

Example (Object Oriented Design)
� You have been hired to design an application for a company to record

information about its employees. You have been given the following information
about the application's requirements.

� The company has a number of branches. It is necessary to record the address
of the building occupied by each branch, as well as the manager (who is an
employee). The company also needs to record the unique employee ID, first
name, last name and annual salary of each employee. Each employee works
for one and only one branch.

� The application will be used to perform the following tasks:
� Insert and delete (fire) employees, and transfer them between branches
� Change any employee information (with exception of the which employee's IDs

cannot be changed, also note that an employee's salary cannot go below zero)
� Retrieve employee information
� Insert and delete branches; branches can only be deleted if they have no

employees
� Change branch data
� Retrieve branch data, including the monthly payroll costs (the sum of the annual

salaries of all employees who work for the branch divided by 12)

Object Interaction Design

� Design the entire application by describing
how the objects are to interact with each
other

� One approach is to write a high level
algorithm and then decompose it into several
methods
� Each such method should have one specific

purpose

Operation Design

� Each of the operations identified in the object
design should be designed

� If possible, re-use previously written methods
or functions

� Otherwise design algorithms to implement
each operation

Test Design

� Determine how each class (or unit, or module) will
be tested before writing the application

� Write unit test cases that test the entire range of
input that can be given to a method
� Expected values
� Boundary values
� Invalid values

� For each input specify the expected result and when
testing is performed compare this to the actual result
� Debug where necessary!

What makes a good program?
� Modularity

� Favorable impact on program development

� Modifiability
� Use of methods and named constants

� Ease of Use
� Considerations for the user interface

� Program should prompt the user for input
� A program should always echo its input
� The output should be well labeled and easy to read

What makes a good program?

� Efficient

� Fail-Safe Programming
� Fail-safe program

� A program that will perform reasonably no matter how
anyone uses it

� Types of errors:

� Errors in input data
� Errors in the program logic

What makes a good program?

� Style
� Five issues of style

� Extensive use of methods
� Use of private data fields
� Error handling
� Readability
� Documentation

