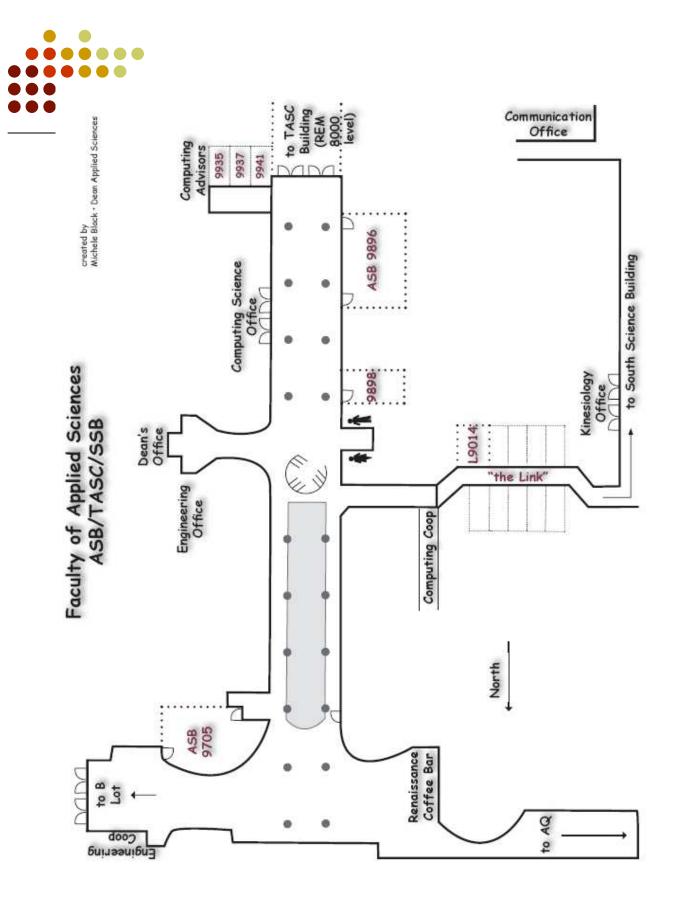

CMPT 225

Data Structures and Programming


Course information

- Lecturer: Jan Manuch (Jano), TASC 9405
 Email: jmanuch@sfu.ca
- TAs:
 - Osama Saleh, osaleh@sfu.ca
 - Maryam Moslemi Naeini, mmoslemi@cs.sfu.ca
- Course website:

http://www.cs.sfu.ca/CC/225/jmanuch/

 Grades: <u>https://gradebook.cs.sfu.ca/</u>

Course timetable

• Lectures:

Mon, Wed, Fri: 1.30pm-2.30pm, West Mall 3210

- Midterm: TBA
- Final Exam: TBA
- Office hours:
 - Instructor: (2 hours) Mon, Wed, 2.30pm-3.30pm, T9405
 - TA(labs): (3 hours) TBA

Grading scheme

- Midterm: 25%
- Final: 45%
- Assignments: 30%
 (6 assignments each worth 5%)
 Late assignments: -20% each day

• Shifting weights:

- It is possible to shift 50% of the midterm weight (that is 12.5% of total weight) to final weight.
- No other shifts are possible!

CMPT 225 Topics

- Software Development Process
 - Software Life Cycle
 - Specification, Design and Testing
 - Decomposition, Abstraction and Encapsulation
- Data Structures and Abstract Data Types
 - Arrays and Linked Lists
 - Stacks, Queues and Priority Queues
 - Trees (Binary, Red-Black, Heaps) and Graphs
 - Hash Tables
- Algorithms
 - O() Notation
 - Recursion
 - Sorting Algorithms

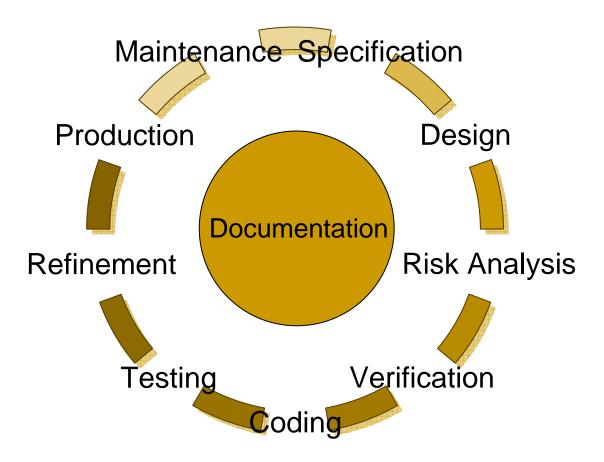
Course Objectives

- Develop problem solving techniques
 - Use abstraction to design solutions
 - Design modular programs
 - Use recursion as a problem-solving strategy
- Provide tools for the management of data
 - Identify abstract data types (ADTs)
 - Construct implementations of the ADTs

Problem Solving and Software Engineering

- Coding without a solution design increases debugging time
- A team of programmers is needed for a large software development project
- Teamwork requires:
 - An overall plan
 - Organization
 - Communication
- Software engineering
 - Provides techniques to facilitate the development of computer programs

What is Problem Solving?


- Problem solving
 - The process of taking the statement of a problem and developing a computer program that solves that problem
- A solution consists of:
 - Algorithms
 - Algorithm: a step-by-step specification of a method to solve a problem within a finite amount of time
 - Data structures to store the data and support the algorithms

What is a Good Solution?

- A good solution is cost effective
 - To develop and maintain:
 - The total cost it incurs over all phases of the development process is minimal
 - To run (i.e. to perform its task)
 - Difficulties encountered by those who use the program (Interaction cost)
 - Computer resources (time and memory) that the program consumes
 - Consequences of a program that does not behave correctly
- Programs must be well structured and documented
 Remark: Efficiency is only one aspect of a solution's cost

Software Life Cycle

Software Life Cycle Phases - 1

- Specification
 - Understand the client's problem and requirements
 - Ensure that the requirements are clear and complete and understood by all parties
- Design
 - Plan the implementation of the application's data and operations
 - Plan the testing
- Risk Analysis
- Verification
 - Ensure that algorithms are correct (methods: invariants, etc.)
 - Ensure that the design satisfies the requirements (validation)
- Implementation
 - Write application and test code

Software Life Cycle Phases - 2

Testing

- Verify that code works
- Verify that the code meets the client's requirements
- There are various types of testing techniques: unit testing, integration testing, system testing, user acceptance testing
- Refining
- Production
 - Package, distribute and install application and train users
- Maintenance
 - Add features
 - Fix bugs
- Documentation
 - Common to all the phases of the life cycle
 - Includes the user manual

Software Life Cycle and CMPT 225

- We are primarily concerned with four phases of the life cycle
 - Design
 - Verification
 - Implementation
 - Testing