
CMPT 225

Data Structures and 
Programming



Course information
� Lecturer: Jan Manuch (Jano), TASC 9405

Email: jmanuch@sfu.ca

� TAs: 
� Osama Saleh, osaleh@sfu.ca
� Maryam Moslemi Naeini, mmoslemi@cs.sfu.ca

� Course website:
http://www.cs.sfu.ca/CC/225/jmanuch/

� Grades:
https://gradebook.cs.sfu.ca/





Course timetable
� Lectures:

Mon, Wed, Fri: 1.30pm-2.30pm, West Mall 3210
� Midterm: TBA
� Final Exam: TBA
� Office hours: 

� Instructor: (2 hours) Mon, Wed, 2.30pm-3.30pm, T9405
� TA(labs): (3 hours) TBA



Grading scheme
� Midterm: 25%
� Final: 45%
� Assignments: 30%

(6 assignments each worth 5%)
Late assignments: -20% each day

� Shifting weights:
� It is possible to shift 50% of the midterm weight (that is 

12.5% of total weight) to final weight.
� No other shifts are possible!



CMPT 225 Topics
� Software Development Process

� Software Life Cycle
� Specification, Design and Testing
� Decomposition, Abstraction and Encapsulation

� Data Structures and Abstract Data Types
� Arrays and Linked Lists
� Stacks, Queues and Priority Queues
� Trees (Binary, Red-Black, Heaps) and Graphs
� Hash Tables

� Algorithms
� O() Notation
� Recursion
� Sorting Algorithms



Course Objectives

� Develop problem solving techniques
� Use abstraction to design solutions
� Design modular programs
� Use recursion as a problem-solving strategy

� Provide tools for the management of data
� Identify abstract data types (ADTs)
� Construct implementations of the ADTs



Problem Solving and Software 
Engineering

� Coding without a solution design increases 
debugging time

� A team of programmers is needed for a large 
software development project

� Teamwork requires:
� An overall plan
� Organization
� Communication

� Software engineering
� Provides techniques to facilitate the development of 

computer programs



What is Problem Solving?

� Problem solving
� The process of taking the statement of a problem and 

developing a computer program that solves that 
problem

� A solution consists of:
� Algorithms

� Algorithm: a step-by-step specification of a method 
to solve a problem within a finite amount of time

� Data structures to store the data and support the 
algorithms



What is a Good Solution?

� A good solution is cost effective
� To develop and maintain:

� The total cost it incurs over all phases of the development 
process is minimal

� To run (i.e. to perform its task)
� Difficulties encountered by those who use the program 

(Interaction cost)
� Computer resources (time and memory) that the program 

consumes
� Consequences of a program that does not behave correctly

� Programs must be well structured and documented
Remark: Efficiency is only one aspect of a solution’s cost



Software Life Cycle

Specification

Risk Analysis

Design

Verification

Coding

Testing

Refinement

Production

Maintenance

Documentation



Software Life Cycle Phases - 1
� Specification

� Understand the client’s problem and requirements
� Ensure that the requirements are clear and complete and 

understood by all parties
� Design

� Plan the implementation of the application’s data and operations
� Plan the testing

� Risk Analysis
� Verification

� Ensure that algorithms are correct (methods: invariants, etc.)
� Ensure that the design satisfies the requirements (validation)

� Implementation
� Write application and test code



Software Life Cycle Phases - 2
� Testing

� Verify that code works
� Verify that the code meets the client’s requirements
� There are various types of testing techniques: unit testing, 

integration testing, system testing, user acceptance testing
� Refining
� Production

� Package, distribute and install application and train users
� Maintenance

� Add features
� Fix bugs

� Documentation
� Common to all the phases of the life cycle
� Includes the user manual



Software Life Cycle and CMPT 
225

� We are primarily concerned with four phases 
of the life cycle
� Design
� Verification
� Implementation
� Testing


