CMPT-225 Jan Manuch

Recommended Labs - Monday, June 19, 2006

The goal of this lab is to get you familiar with big O notation.
a) Prove the third rule of big O notation arithmetic (by using definition of big O notation). That is prove that if $f_{1}(n)$ is of order $O\left(g_{1}(n)\right)$ and $f_{2}(n)$ is of order $\mathrm{O}\left(\mathrm{g}_{2}(\mathrm{n})\right)$ then $\mathrm{f}_{1}(\mathrm{n}) * \mathrm{f}_{2}(\mathrm{n})$ is of order $\mathrm{O}\left(\mathrm{g}_{1}(\mathrm{n}) * \mathrm{~g}_{2}(\mathrm{n})\right)$.
b) On the lecture we said that the constants can be ignored. However, not all constant can be ignored. By the first rule that $\mathrm{f}(\mathrm{n})$ and $\mathrm{c} * \mathrm{f}(\mathrm{n})$ have the same order, i.e., the multiplicative constant in the front of the function can be ignored. Is it true that

1) n^{c} and n^{d} have the same order (when $\mathrm{c}<\mathrm{d}$ are constants greater than 0)?
2) c^{n} and d^{n} have the same order (when $\mathrm{c}<\mathrm{d}$ are constants greater than 1)?
3) 2^{cn} and 2^{dn} have the same order (when $\mathrm{c}<\mathrm{d}$ are constants greater than 0)?

Either prove that they have the same order (using the definition of big O notation), or show that the function with d is not of order of the function with c. (Of course, it is always true that the function with c (remember $\mathrm{c}<\mathrm{d}$) is of order of the function with d.)

