CMPT-225 Assignment 5

Instructor Jan Manuch

Deadline: Wednesday, July 19, 2006 at 4pm

The assignment is worth 5% of the final grade. Aersilie last 2 questions on the paper and subnmit the
the drop-in box with a label CMPT-225 located opteo® CS General Officé-or thefirst question write
a program in Java or C++ and submit using onlifersssion serversubmit.cs.sfu.ca.

1. Write a program in Java or C++. The task is tolemgent ADT Sorted List as a derived class
from ADT List. For the ADT List (with the familiainterface) use generic array based
implementation provided (ListInterface.java, Listéption.java,
ListindexOutOfBoundsException.java, List.java) withis document. The ADT Sorted List
should have the following interface:

publ i c bool ean isEmpty();
public int size();

public voidadd(int i, Titem);
/I Precondition: 1 <=i<=size()+1

/I Postcondition: The size of the list is increment ed by 1 and the
/I the number of elements ‘item’ has increased by 1 . The position i
/l'is a recommended position where to start looking for position

/I where to insert ‘item’. It can be ignored.

publ i c Comparable get(i nt i)
/I Precondition: 1 <= i <= size()
/I Postcondition: The i-th smallest item in the lis tis returned.

public voi d removeAll
/I Postcondition: List is empty.

public voidremove(int i)

/I Precondition: 1 <= i <= size()

/I Postcondition: The i-th smallest item in the lis t is removed
/I from the list.

public voidremove(T item);
/I Precondition: none
/I Postcondition: All occurrences of ‘item’ are rem oved from the list.

public int count(T item);

/I Precondition: none

/I Postcondition: Returns the number of occurrences of ‘item’
/I in the list.

Note that all methods except last two are preseAOT List, although some of them have
different meanings. For sure, you need to implertientast two methods. For the remaining

Page 1

methods, you might need or might not need to aderttie method from classst depending on
your implementation. The interface for the new slasin the file SortedListinterface.java. Note
it contains only the new method and inherits reingimethods fronkistinterface. Your class
implementing ADT Sorted List should be callgdrtedList.

Requirements:

» ClassSortedList should be derived from claksst, should be generic and should
implement interfac&ortedListinterface.

* elements of sorted list have to be stored in ugtgyl(superclass) list. You are not
allowed to store elements in some other data merelen if it would be of type List.

* elements should be compared wittmpareTo() method.

» if you decide to store items in the underlying ADi§t in sorted manner (see bellow),
implement methoadd() using thebinary sear ch algorithm which will start searching
not in the middle position of the array but at posii (i is the first parameter to the
method).

Recommended implementation: keep the elements in underlying list in sorted neanThat way
you don’t need to overridget() and the original version eémove(), but you have to override
add() so that the element is inserted to a proper pltten searching for a proper place where
to insert the new element, you should start lookiog the position recommended by the first

argument ofdd(). For instance, if you would use binary searchind the position, you could
pick the first position you are going to test tothe recommended position.

Other possibility, is to leavadd() as it is, i.e., let it insert elements to recomdezhplace, but
override methodget() and the original version eémove() so that they will first sort the list and
then return the i-th smallest element.

Remarks:

e you can use auxiliary helping methods when neealethng as they are declamgrivate.

» for Java programmers: all code you write shoultbbated in the file SortedList.java. You
should not modify other files, with exception ofster.java, which will be replaced with
another file when testing.

Hints:

» your implementation will be tested using test §iimilar to Tester.java.

» the declaration of class SortedList should look ethiimg like this:

public cl ass SortedList<T ext ends Comparable>
ext ends List<T> i mpl enent s SortedListinterface<T> {

For C++ programmers:

Page 2

The supporting code which comes with this assigrrisdiocated in the following files:
ListException.h, ListindexOutOfRangeException.hstlh, SortedList.h, Tester.cpp.

Remarks:

The implementation for ADT List is located in thedder file List.h. In C++, the
definitions of the methods of a template class havee located in the same file as
definition of the template class (or if they ardlifferent file, definitions should be
prefixed with keywordexport, but most of the compilers does not support taégure yet).
All code you write should be located in the filert@dList.h. In this file, you can
uncomment any method inherited from template dléstsif you need to override it and
you should provide implementations (codes) for ame@nted methods and new methods
after the class definition.

You can add private section at the end of defininbtemplate clasSortedList and add
new data member there or any auxiliary methodswaemt to use.

When calling a method which is inherited from teatplclasd.ist and is not overridden in
template clasSortedList, youhaveto use one of the two following ways (otherwise your
code will not compile): either access this methiadthis, or explicitly specify that you are
calling a method defined inist with scope resolution operatdrist<T>::.

For example, assume that you haven't overridden metget{) in template class
SortedList (you didn’t uncommented its declaration in theimiébn of SortedList) and
that in some other method $brtedList, if you need to caljet() method. You cannot call
get() directly:

T item = get(index); // compiler error
you have to use one of following two statements:

T item = this->get(index);
T item = List<T>::get(index);

You cannot substitutieit for template parametdr, otherwise the compiler will be not able
to distinguish between items and indexes. Therefong is used as a template parameter
in sample testing file Tester.cpp.

You can only modify the file SortedList.h and Testpp (if you want to try more
complicated tests), but Tester.cpp will be replasét another file when testing your
submission.

Consider the Quick Sort algorithm presented orlébire/text book. Assume that pivot in
each recursive call is chosen such that the sigieedirst partition is

a) n-1if n<1001, otherwisel000;
b) n/1000;

wheren is the size of the subarray to be partitioned. §éwond partition has sirel-(the
size of the first partition). For example, consittex strategyp). Assume we run Quick sort

Page 3

on an array of size 30 000. In the first partitianithe whole array is partitioned to: the first
partition of size 30, pivot (1 element) and theoseLpartition of size 29 970. In the next
recursive call, the subarray of size 30 is furietitioned to: the first partition of size O,
pivot (1 element) and the second partition of 22geetc.

For each of théwo cases,
» specify the recurrent formula expressing the timgt of the quick sort;
e provide an explicit non-recurrent formula (i.e.lv&othe recurrence) for the time cost;
use the big2 notation!
You can assume that the partitioning algorithm sdkeear O(n)) time, where n is the size of
subarray which is being partitioned. To solve #heurrence:
(1) use repeated substitution to guess the solutimh; a
(2) prove that your guess is correct using the matkieatdnduction.

Hint: in casen), you can assume th&{1000) is of orderO(1).

Providetwo codes for iterative version of pre-order and post-ortlee traversal algorithms
for binary trees. The header of the first algoritsimould look like this:

static publi c void preOrder(TreeNode<T> root);

The pre-order algorithm should be implemented uemg stack (andireeNode-s having
only references to left and right child). The poster algorithm should be implemented
without using stack or any other complex data stmgc(no array, etc, you can use only
variables which can store data of S@), for instance constant number of references to
TreeNode-s, boolean orint variables, etc), but you can assumeTreeNode-s have
reference to the parent node.

Remember, the traversal algorithm should call metharid visit(TreeNode<T>) on every
node in the treexactly once. In the pre-order traversal, it should eaiit() on a node v
before it callsvisit() on any of its descendants. In the post-order teabeit should calvisit()
on a node v after it callgsit() on every of its descendants.

Page 4

