CMPT-225 Assignment 5

Instructor Jan Manuch

Deadline: Friday, July 21, 2006 at 4pm

The assignment is worth 5% of the final grade. Aersilie last 2 questions on the paper and subnmit the
the drop-in box with a label CMPT-225 located optgo® CS General Officé=or thefirst question write
a program in Java or C++ and submit using onlifersssion serversubmit.cs.sfu.ca.

1. (3 points) Write a program in Java or C++. Thdtiago implement ADT Sorted List as a
derived class from ADT List. For the ADT List (withe familiar interface) use generic array
based implementation provided (ListInterface.jdvatException.java,
ListindexOutOfBoundsException.java, List.java) withis document. The ADT Sorted List

should have the following interface:
publ i c bool ean isEmpty();
public int size();

public voidadd(int i, Titem);

/I Precondition: 1 <=i<=size()+1

/I Postcondition: The size of the list is increment

/I the number of elements ‘item’ has increased by 1
/l'is a recommended position where to start looking
/I where to insert ‘item’. It can be ignored.

public Tget(inti); /I corrected return type to T
/I Precondition: 1 <= i <= size()
/I Postcondition: The i-th smallest item in the lis

public voi d removeAll
/I Postcondition: List is empty.

public voidremove(int i)

/I Precondition: 1 <= i <= size()

/I Postcondition: The i-th smallest item in the lis
/I from the list.

public voidremove(T item);
/I Precondition: none
/I Postcondition: All occurrences of ‘item’ are rem

public int count(T item);

/I Precondition: none

/I Postcondition: Returns the number of occurrences
/I in the list.

ed by 1 and the
. The position i
for position

tis returned.

t is removed

oved from the list.

of ‘item’

Note that all methods except last two are preseAOT List, although some of them have
different meanings. For sure, you need to implertientast two methods. For the remaining

Page 1

methods, you might need or might not need to aderttie method from classst depending on
your implementation. The interface for the new slasin the file SortedListinterface.java. Note
it contains only the new method and inherits remaimethods frontistinterface. Your class
implementing ADT Sorted List should be callgdrtedList.

Requirements:

» ClassSortedList should be derived from claksst, should be generic and should
implement interfac&ortedListinterface.

* elements of sorted list have to be stored in ugdeyl(superclass) list. You are not
allowed to store elements in some other data memlen if it would be of type List.

* elements should be compared wittmpareTo() method.

» if you decide to store items in the underlying ADi$t in sorted manner (see bellow),
implement methoadd() using thebinary sear ch algorithm which will start searching
not in the middle position of the array but at posii (i is the first parameter to the
method).

Recommended implementation: keep the elements in underlying list in sorted neanThat way
you don’t need to overridget() and the original version e€move(), but you have to override
add() so that the element is inserted to a proper pten searching for a proper place where
to insert the new element, you should start looking the position recommended by the first
argument ofdd(). For instance, if you would use binary searchnd the position, you could
pick the first position you are going to test tothe recommended position.

Other possibility, is to leavadd() as it is, i.e., let it insert elements to recomdezhplace, but
override methodget() and the original version e€move() so that they will first sort the list and
then return the i-th smallest element.

Remarks:
e you can use auxiliary helping methods when neealethng as they are declamgrivate.

» for Java programmers: all code you write shoultbbated in the file SortedList.java. You
should not modify other files, with exception ofster.java, which will be replaced with
another file when testing.

e The recommended position passed as the first p&eatoadd() does not have to be
meaningful. That means no matter strategy you aisgriplementation, you should first
check if the value is in the rangesize()+1. You should not throw exception in this case.
If it's smaller than 1 than replace it with 1, fisigreater thasize()+1, replace it with
size()+1. Then use this corrected value: in the first stygtas a starting value for binary
search, in the second strategy, as an actual paaywel pass tadd() of the superclass
(i.e., also in the second strategy you have toraeadd() method, but the code is very
simple, just correct the value of the position esadibed above).

Hints:
» your implementation will be tested using test §iimilar to Tester.java.

Page 2

the declaration of class SortedList should look sitrimg like this:

public cl ass SortedList<T ext ends Comparable>
ext ends List<T> i mpl enent s SortedListinterface<T> {

For C++ programmers:

The supporting code which comes with this assigrrisdiocated in the following files:
ListException.h, ListindexOutOfRangeException.hstlh, SortedList.h, Tester.cpp.

Remarks:

The implementation for ADT List is located in thedder file List.h. In C++, the
definitions of the methods of a template class Havee located in the same file as
definition of the template class (or if they ardlifferent file, definitions should be
prefixed with keywordexport, but most of the compilers does not support teégure yet).
All code you write should be located in the filert@dList.h. In this file, you can
uncomment any method inherited from template dléstsif you need to override it and
you should provide implementations (codes) for ameented methods and new methods
after the class definition.

You can add private section at the end of definitbtemplate clasSortedList and add
new data member there or any auxiliary methodswant to use.

When calling a method which is inherited from teatplclasd.ist and is not overridden in
template clasSortedList, youhaveto use one of the two following ways (otherwise your
code will not compile): either access this methiadthis, or explicitly specify that you are
calling a method defined inist with scope resolution operatadrist<T>::.

For example, assume that you haven't overridden metget{) in template class
SortedList (you didn't uncommented its declaration in theinigbn of SortedList) and
that in some other method 8brtedList, if you need to caljet() method. You cannot call
get() directly:

T item = get(index); // compiler error
you have to use one of following two statements:

T item = this->get(index);
T item = List<T>::get(index);

You cannot substitutieit for template parametdr, otherwise the compiler will be not able
to distinguish between items and indexes. Therefong is used as a template parameter
in sample testing file Tester.cpp.

You can only modify the file SortedList.h and Testpp (if you want to try more
complicated tests), but Tester.cpp will be replaséh another file when testing your
submission.

Marking details:

2 parts:

visual inspection of the source code (1 point):

Page 3

0 (0.5 points) check that the previous code was romtified, mainly check that no
new methods were added to the class List andhikaddta members of List are
private (and not protected or public). If a studeidn’t submit files with the
previous code, automatically give them 0.5 pointtifiis part.

o (0.5 points) if the implementation of the studenkéeping elements in a sorted
manner, check that the add() method is using tharpisearch to find a position
where to insert an element. If they use other imglatation, automatically give
them 0.5 point for this part.

Remark: to check whether implementation is keepiegents sorted, look at the
code of get() method. If it's not overloaded ottjcalls super. get(), then
elements are sorted (i.e., check for binary seiarelld()). If get() is sorting and
searching for k-th smallest element, then the efesn@re not sorted (i.e., 0.5
points automatically).

e testing (2 points): replace or add Tester.javaBragip to the collection of files submitted
by student and compile. The program should outpaipbints in the last line.
Remark: some students submitted only SortedList.java/8brst.h, the only file which
needed to be changed for the implementation gbtbklem. This is complicating the
evaluation process. Please, next time submitla#i,feven those included with the
assignment which you are not supposed to modify.

2. (4 points) Consider the Quick Sort algorithm présdron the lecture/text book. Assume that
pivot in each recursive call is chosen such thatsike of the first partition is

a) n-1if n<1001, otherwisel000;
b) n/1000;

wheren is the size of the subarray to be partitioned. §éwond partition has sirel-(the

size of the first partition). For example, consittex strategyp). Assume we run Quick sort
on an array of size 30 000. In the first partitranithe whole array is partitioned to: the first
partition of size 30, pivot (1 element) and theosekpartition of size 29 970. In the next
recursive call, the subarray of size 30 is furipetitioned to: the first partition of size 0,
pivot (1 element) and the second partition of &@geetc.

For each of théwo cases,
» specify the recurrent formula expressing the tiws of the quick sort;
e provide an explicit non-recurrent formula (i.e.lv&othe recurrence) for the time cost;
use the big2 notation!
You can assume that the partitioning algorithm ¢dkeear O(n)) time, where n is the size of
subarray which is being partitioned. To solve theurrence:
(1) use repeated substitution to guess the solutih; a

Page 4

(2) prove that your guess is correct using the matkieatdnduction.

Hint: in casen), you can assume th&{1000) is of orderO(1).

Marking details:

There are two problems a) and b), each worth 2tgpdiistribution of points for each of two
problems:

* recurrent formula (0.4 points)

e substitution method (0.7 points)

e guess using O notation (0.2 points)

e proof of the guess using mathematical inductiori f@ints). Remark: it's ok if the student
omitted the base case of the induction, as it'sats/that for some small value of n any
formula will be true if the constant is set sufictly high.

The correct solutions:

a) Recurrent formula: fon<1001, T(n) is O(1), otherwise T(n)=0(n)+T(1000)+T(n-

1001)=0(1)+T(n-1001).
Substitution method: we have that T(n)<=cn+T(n-)d0t some value c>0.
Repeated substitution gives:
T(n)<=cn+c(n-1001)+c(n-2.100)+...+c(n-(k-1).1001)+3K11001)

= k/2.c.(2n-(k-1).1001)+T(n-k.1001).
If n-k.1001 is a constant, then T(n-k.1001) is O()is is the case, if for instance,
n-k.1001=1. Then k=(n-1)/1001. Therefore,
T(n)<=(n-1)/2002.c.(2n-(n-1)+1001)+0(1)=C)n
Guess: O(f)
Proof by MI: Show that there is m>0 and d>0 suett T{n)<=d.f, for all n>=m.
The base is always true, just choose d (and/ouffitently large. Inductive step:
induction hypothesis is that T(I)<=8.for all I<n and we need to prove it for I=n.
T(n)<=cn+T(n-1001), by ind. hyp.,

<=cn+d(n-100%) drf + cn + 1001 - 2.1001.d

= dA + (c-1001d)n + 1001(1001-d).
Now, choose d such that c-1001d<=0 and 1001-d<e0,d>=c/1001 and
d>=1001, then T(n) <= drand we are done.

b) Recurrent formula: T(n)=0(n)+T(n/1000)+T(n-1-n/1000

Substitution method: we have that T(n)<=cn + T(0@A.@) + T(999/1000.n).
Repeated substitution gives:
T(n) <= cn + T(1/1000.n) + T(999/1000.n)

<=cn + ¢.1/1000n + T(1/1000) + T(999/1008n)

+¢.999/1000.n + T(999/160) + T(99%/100F.n)

= 2cn + T(1/106M) + T(999/1008n) + T(999/1008n) + T(999/100C.n)
etc. Important observation is that if we simultamsgp expand all terms (substitute
for them using recurrent formula), it will produaeother c.n (sum of partitioning
times). If we perform the substitution k times, ave k.cn + 2terms of type
T(...). We need to pick k such that all of them af&)OThe rightmost term
decreases slowest and is after k simultaneousisuiosts T(999/1000"n).
Assume that 9991000.n = 1, then k=log n / log (1000/999)3319 log n.

Page 5

Although the constant is big, it’s still O(log Mherefore, the time is k.cn=0(n.log
n). [Also note that 2terms is only O(n) terms and each of them is G{d they all
together are only O(n). This is expected, as thashuvork during sorting is done
during partitioning.]
Guess: T(n)=0O(n.log n).
Proof by MI: Show that there is m>0 and d>0 suelt T{n)<=d.n.log n, for all
n>=m. The base is always true, just choose d (amdysufficiently large.
Inductive step: induction hypothesis is that T(Qid=og I, for all I<n and we need
to prove it for I=n.
T(n)<= cn + T(n/1000)+T(999/1000.n), by ind. hyp.,
<=cn + d.n/1000.log(n/1000) + d.999/1006g(999/1000.n)

=dn.log n + cn —d.n.log(1000)/1000 —999/1000./0g9(1000/999)
Now, it's enough to set d such that, for instanckleg(1000)/1000 <=0, i.e., pick
d>=1000c/log (1000¥ 100c.

3. (3 points) Providéwo codes for iterative version of pre-order and post-ortitee traversal
algorithms for binary trees. The header of the atgorithm should look like this:

static publi c void preOrder(TreeNode<T> root);

The pre-order algorithm should be implemented uemg stack (andireeNode-s having
only references to left and right child). The posder algorithm should be implemented
without using stack or any other complex data stmgc(no array, etc, you can use only
variables which can store data of S@), for instance constant number of references to
TreeNode-s, boolean orint variables, etc), but you can assumeTreeNode-s have
reference to the parent node.

Remember, the traversal algorithm should call metharid visit(TreeNode<T>) on every
node in the treexactly once. In the pre-order traversal, it should eaiit() on a node v
before it callsvisit() on any of its descendants. In the post-order teabeit should calvisit()
on a node v after it callgsit() on every of its descendants.

Marking details:

Each of two codes is worth 1.5 points.

Pre-order algorithm idea: at each node: visit théen push the right child on the stack (if it's not
null) and move to the left child. If the currentdeobecomes null, pop() a new node from stack.

Page 6

Post-order algorithm: traverse tree as describetti@rlecture, traversing each edge twice (first
time down, second time up). Visit the node wheniogno it from the right child (or if it doesn’t
have right child, when coming to it from left chilor if it's a leaf, just visit it).

Page 7

