Here is the solution to the sample questions on time complexity. As an alternative to the
computations here, you can also use the master theorem

(https://en.wikipedia.org/wiki/Master _theorem_(analysis_of algorithms)). | personally, don't like
that approach because it gives little insight as to why the time complexity is what it is. But you
may choose to use it over this kind of computation.

Mystery1: Final result : O(n”3)
void mystery1(int n){
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
cout <<j<<""<<j<<endl
if (n>0)
mystery1(n-1);

The graph of complexity: Computations:

In level i:
only one child
size of the child is n-i
the extra time we spend is O((n-i)"2)

number of levels = n

The sum of extra time over all the levels :
n(n+1)(2n+1)/6 = O(n*3)

ORNO020,0

Mystery2: Final result : O(n)
void mystery2(int n){
for (int i=0; i<n; i++)
cout << j << endl;
if (n>1)
mystery2(n/2);
}

The graph of complexity: Computations:

In level i
only one child
size of the child is n/(2%)
the extra time we spend is C*n/(2%i) = O(n/(2"))

number of levels: Ig(n) +1 (assuming n=2"k)
The sum of extra time over all the levels :

C* n* (1/1+1/2+...1/(2%)+....1/2%g(n)) <
C* n* (1/1+1/2+....) <= n* 2 = O(n)

ORNO020,0

Mystery3: Final result : O(Ig(n))
void mystery3(int n){
cout << n << endl;
if (n>1)
mystery3(n/2);

The graph of complexity: Computations:

In level i
only one child
size of the child is n/(2")
the extra time we spend is C = O(1)

number of levels: Ig(n) +1 (assuming n=2"k)
The sum of extra time over all the levels :

C+C+C+...+C (number of times: Ig(n)+1)
=Clg(n) + C =0(g (n))

ORNO020,0

Mystery4: Final result: O(n)
void mystery4(int n){
cout << n << endl;

if (n>1)
mystery4(n/2);
mystery4(n/2);
}
}
The graph of complexity: Computations:
| m I
\:'.'-'—-'.'K .
|.f. 12, I'If’"nﬂ N In level i:
ol S 27 children
TN T NN size of the child is n/(2%)
| nd | | ni4 | | nd4 | | | . .
M A LR S the extra time we spend for each child C =
Oo(1)
the total extra time we spend in level i is
C*2Ai
CONCONY L O) | number of levels = Ig(n)+1 (assuming n=27k)
A A A N
The sum of extra time over all the levels :
20+ 2M + 282 + ..+ 27N + ... 2M(Ig(n)+1) =
2MIg(n)+2) -1 = 4n -1 = O(n)

Mystery5: Final result : O(n Ig(n))
void mystery5(int n){
for (int i=0; i<n; i++)
cout <<i << endl;

if (n>1)
mystery5(n/2);
mystery5(n/2);
}
}
The graph of complexity:
| n I
__:-m'.'f
() ()
(e) () (s) ()
R M N
NN TN e
[T A T Y A .o 1 1]
M M A M

Computations:

In level i

27j children

size of the child is n/(2%)

the extra time we spend for each child
C*n/(2Mi) = O(n/(2"))

the total extra time we spend in level i is
(27M)*C*(n/(2%0)) = C*n

number of levels = Ig(n)+1 (assuming n=2"k)
The sum of extra time over all the levels :

C*n+C*n+..+C*n (Ig(n) + 1 times)
= C*n (Ig(n)+1) = C*n*Ig(n) + C*n = O(n Ig(n))

Mystery6: Final result : O(n*2)
void mystery6(int n){
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)

cout <<j<<""<<j<<endl

if (n>1)Y
mystery6(n/2);
mystery6(n/2);
}

The graph of complexity:

Ilnfl

L
[nz | [mz |
R e .-"";
o e il
o H"‘-—. e ey
s "y S .\'. _.f" '\.I
I‘ wad | | onid | | n | I‘ g |
\.____/" A M e
lI(,.-—-.\. ./.--—-.\. llr,.-—-.\‘ ____\. —
[T O P T
| X |) X |
M L M e

Computations:

In level i:

2Mi children

size of the child is n/(2%)

the extra time we spend for each child is
C*(n/(2%))"2 = O((n/(2%))*2)

the total extra time we spend in level i is
(2M)*C*((n/(2M))M2) = C*(n"2)/(2M)

number of levels = Ig(n)+1 (assuming n=2"k)

The sum of extra time over all the levels :
C*n 2 (1/1+1/2+...1/(2%)+....1/2Mg(n))

< C*(n2) (1/1+1/2+...1/(27N)+....)

<= C*(n*2)*(2) = O(n"2)

