
Here is the solution to the sample questions on time complexity. As an alternative to the 
computations here, you can also use the master theorem 
(https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)). I personally, don't like 
that approach because it gives little insight as to why the time complexity is what it is. But you 
may choose to use it over this kind of computation.  
 
Mystery1:  Final result : O(n^3) 
void mystery1(int n){  

for (int i=0; i<n; i++) 
for (int j=0; j<n; j++) 

cout << i << " " << j << endl; 
if (n>0) 

mystery1(n-1); 
} 

The graph of complexity: 

 
 

Computations: 
 
 
In level i: 
   only one child 
   size of the child is n-i 
   the extra time we spend is O((n-i)^2) 
 
number of levels = n 
 
The sum of extra time over all the levels : 
n(n+1)(2n+1)/6 = O(n^3) 
 

 
 
 
  



 
Mystery2:  Final result : O(n) 
void mystery2(int n){  

for (int i=0; i<n; i++) 
cout << i << endl; 

if (n>1) 
mystery2(n/2); 

} 

The graph of complexity: 

 
 

Computations: 
 
 
In level i: 
   only one child 
   size of the child is n/(2^i) 
   the extra time we spend is C*n/(2^i) = O(n/(2^i))  
 
number of levels:  lg(n) +1 (assuming n=2^k) 
 
The sum of extra time over all the levels :  
C* n* (1/1+1/2+...1/(2^i)+....1/2^lg(n))  < 
C* n* (1/1+1/2+....) <= n* 2 = O(n) 
 
 
 

 
 
  



 
Mystery3:  Final result : O(lg(n)) 
void mystery3(int n){  

cout << n << endl; 
if (n>1) 

mystery3(n/2); 
} 
 

The graph of complexity: 

 
 

Computations: 
 
 
In level i: 
   only one child 
   size of the child is n/(2^i) 
   the extra time we spend is C = O(1) 
 
number of levels:  lg(n) +1 (assuming n=2^k) 
 
The sum of extra time over all the levels :  
C + C + C + .... + C   (number of times: lg(n)+1) 
= C lg(n) + C = O(lg (n)) 
 
 
 

 
 
 
  



Mystery4:  Final result : O(n) 
void mystery4(int n){  

cout << n << endl; 
if (n>1){ 

mystery4(n/2); 
mystery4(n/2); 

} 
} 
 

The graph of complexity: 

 
 

Computations: 
 
 
In level i: 
   2^i children 
   size of the child is n/(2^i) 
   the extra time we spend for each child C = 
O(1) 
   the total extra time we spend in level i is 
C*2^i 
 
number of levels = lg(n)+1  (assuming n=2^k) 
 
The sum of extra time over all the levels :  
2^0 + 2^1 + 2^2 + ... + 2^i + ... 2^(lg(n)+1) =  
2^(lg(n)+2) -1 = 4n -1 = O(n) 
 

 
 
  



Mystery5:  Final result : O(n lg(n)) 
void mystery5(int n){  

for (int i=0; i<n; i++) 
cout << i << endl; 

if (n>1){ 
mystery5(n/2); 
mystery5(n/2); 

} 
} 
 

The graph of complexity: 

 
 

Computations: 
 
 
In level i: 
   2^i children 
   size of the child is n/(2^i) 
   the extra time we spend for each child 
C*n/(2^i) = O(n/(2^i)) 
   the total extra time we spend in level i is 
(2^i)*C*(n/(2^i)) = C*n 
 
number of levels = lg(n)+1  (assuming n=2^k) 
 
The sum of extra time over all the levels :  
C*n + C*n + ... + C*n  (lg(n) + 1 times) 
= C*n (lg(n)+1) = C*n*lg(n) + C*n = O(n lg(n)) 

 
 
 
  



Mystery6:  Final result : O(n^2) 
void mystery6(int n){  

for (int i=0; i<n; i++) 
for (int j=0; j<n; j++) 

cout << i << " " << j << endl; 
if (n>1){ 

mystery6(n/2); 
mystery6(n/2); 

} 
} 
 

The graph of complexity: 

 
 

Computations: 
 
 
In level i: 
   2^i children 
   size of the child is n/(2^i) 
   the extra time we spend for each child is 
C*(n/(2^i))^2 = O((n/(2^i))^2) 
   the total extra time we spend in level i is 
(2^i)*C*((n/(2^i))^2) = C*(n^2)/(2^i) 
 
number of levels = lg(n)+1 (assuming n=2^k) 
 
The sum of extra time over all the levels :  
C*n^2 (1/1+1/2+...1/(2^i)+....1/2^lg(n))  
< C*(n^2) (1/1+1/2+...1/(2^i)+....)  
<= C*(n^2)*(2) = O(n^2) 

 


