Data Structures &
Programming

An Introduction to
Graph Algorithms

Golnar Sheikhshab

Simple Graphs

A simple graph.

Nodes: {0, 1, 2, 3, 4)

Edges: {{0,1},{0,2},{0,3},{1,2},{3,4}}

Directed or Weighted Graphs

A directed and weighted graph. °
10
Nodes: {A, B, C, D, E}
O
Edges: {(A.C), (AD), (B,A), (C,B), (D

C,D), (E, A)}
7)

Path, Cycles, and Connected Components

There are two paths from 1 to 6:
Path1: ({1,2}, {2,3}, {3,5},{5,6})
Path2: ({1,4}, {4,3}, {3,5},{5,6})
There is no path from 3 to 7.

(1,2,3,4) forms a cycle
This graph is not connected.
connected components of the graph:

{1,2,3,4,5,6} and
{7,8,9}

Tree and Forest

Tree: a simple connected graph with no cycles

Forest: a simple graph whose connected
components have no cycles

General trees and binary trees that we have
seen previously are rooted trees with
directions imposed on them.

Storing the graph

Adjacency list:

0:{1,2,3,}

1:{0,2}

2:{0,1}

3:{0,4} Adjacency matrix:

443} 01110
10100
11000
10001

00010

Storing the graph

Adjacency list:

|ds:

A: ((C,12),(D,60))

B: ((A,10))

C: ((B,20),(D,32))

D: ()
E: ((A,7))

moowz»
AwN O

Adjacency matrix:

00 00 12 60 00
10 00 00 00 OO0
00 20 00 32 00
00 00 00 00 00
07 00 00 00 00

labels:

(A,B,C, D, E)

Graph Traversal (or search)

Depth first search (DFS)
Breadth first search (BFS)

We start from a node and try to either visit all nodes or find a specific node.

Depth First Search (DFS)

Algorithm DFS_Traversal(G,v):

Input: A graph G (stored as adjacency list) and a vertex v of G
Output: A sequence of vertices in dfs traversal order started at v

label v as visited

ret «— concatenate(ret,(v))

for all unvisited vertices w in G[v] do
DFS(G,w)

DFS(G,0):

ret (global variable)
(0)

(0,1)

(0,1,2)

(0,1,2)

(0,1,2)

(0,1,2,3)
(0,1,2,3,4)
(0,1,2,3,4)

(0,1,2,3,4)

visited (global variable)
{0}

{0,1}

{0,1,2}

{0,1,2}

{0,1,2}

{0.1,2,3}

{0,1,2,3,4}

{0,1,2,3,4}

{0,1,2,3,4}

10

Breadth First Search (BFS)

Algorithm BFS_Traversal(G,v):
Input: A graph G (stored as adjacency list) and a vertex v of G
Output: A sequence of vertices in bfs traversal order started at v

declare g as a queue of vertices
g.enqueue(Vv)
label v as visited
while q is non-empty
u « q.front()
g.dequeuel()
ret «— concatenate(ret, (u))
for all unvisited vertices w in G[u] do
g.enqueue(w)
label w as visited

11

BFS example

BFS(G,0):

ret

y

(0)

(0.1)
(0,1,2)
(0,1,2,3)

(0,1,2,3,4)

visited

{0}
{0,1,2,3}
{0,1,2,3}
{0,1,2,3}
{0,1,2,3,4}

{0,1,2,3,4}

12

Do It Yourself

DFS(G,1)?
DFS(G,3)?
DFS(G,7)?
BFS(G,1)?
BFS(G,3)?

BFS(G,7)?

13

Give ideas to answer these questions

A simple graph G and two vertices u and v are given.
1. Is there a path between v and u?

2. Are v and u in the same connected components?
3. How many connected components are there?

4. How to find a path between v and u?

5. How to find the shortest path between v and u?

14

Minimum Spanning Tree

Defined for weighted undirected graphs
It's a tree
It spans all the vertices

Sum of its edge weights is minimum

15

Minimum Spanning Tree

Which of the following is a spanning tree?
1.{(A,C), (C,E), (C,D), (E,F)}

2.{(A,C), (C,E), (C,D), (E,D)}

3.{(A,B), (A,C), (C,E), (C,D), (E,F)}
4.{(B,C), (D,F), (B,F), (D,E), (A,C)}

5.{(B,C), (D,F), (B,F), (D,E), (E,F)}

16

Kruskal algorithm for minimum spanning tree

Repeatedly pick the edge with minimum weight unless it causes a cycle

How can we check if an edge will cause a cycle in a graph that doesn't already
have one?

Look at the pseudo-code in the next slide and give the time complexity of the
algorithm.

17

Algorithm Kruskal(G):
Input: A simple connected weighted graph G with n vertices and m edges
Output: A minimum spanning tree T for G
for each vertex vin G do
Define an elementary cluster C(v) « {v}.

Initialize a priority queue Q to contain all edges in G, using the weights as keys.

T—0 {T will ultimately contain the edges of the MST}
while T has fewer than n — 1 edges do
(u,v) < Q.removeMin()
Let C(v) be the cluster containing v, and let C(u) be the cluster containing wu.
if C(v) # C(u) then
Add edge (v,u)to T.
Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u).
return tree T
Code Fragment 13.25: Kruskal’s algorithm for the MST problem.

18

