
Data Structures &
Programming

An Introduction to
Graph Algorithms

Golnar Sheikhshab
1

Simple Graphs

A simple graph.

Nodes: {0, 1, 2, 3, 4}

Edges: {{0,1},{0,2},{0,3},{1,2},{3,4}}

2

Directed or Weighted Graphs

A directed and weighted graph.

Nodes: {A, B, C, D, E}

Edges: {(A,C), (A,D), (B,A), (C,B), (C,D), (E, A)}

3

Path, Cycles, and Connected Components
There are two paths from 1 to 6:
Path1: ({1,2}, {2,3}, {3,5},{5,6})
Path2: ({1,4}, {4,3}, {3,5},{5,6})
There is no path from 3 to 7.

(1,2,3,4) forms a cycle

This graph is not connected.

connected components of the graph:
{1,2,3,4,5,6} and
{7,8,9}

4

Tree and Forest
Tree: a simple connected graph with no cycles

Forest: a simple graph whose connected
components have no cycles

General trees and binary trees that we have
seen previously are rooted trees with
directions imposed on them.

5

Storing the graph

Adjacency list:
0: {1,2,3,}
1: {0,2}
2: {0,1}
3: {0,4}
4:{3}

Adjacency matrix:
0 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 1
0 0 0 1 0

6

Storing the graph
Adjacency list:

A: ((C,12),(D,60))
B: ((A,10))
C: ((B,20),(D,32))
D: ()
E: ((A,7))

Adjacency matrix:
00 00 12 60 00
10 00 00 00 00
00 20 00 32 00
00 00 00 00 00
07 00 00 00 00

Ids:
A: 0
B: 1
C: 2
D: 3
E: 4

labels:
(A, B, C, D, E)

7

Graph Traversal (or search)
Depth first search (DFS)

Breadth first search (BFS)

We start from a node and try to either visit all nodes or find a specific node.

8

Depth First Search (DFS)
Algorithm DFS_Traversal(G,v):

Input: A graph G (stored as adjacency list) and a vertex v of G
Output: A sequence of vertices in dfs traversal order started at v

label v as visited
ret ← concatenate(ret,(v))
for all unvisited vertices w in G[v] do

DFS(G,w)

9

DFS(G,0):
ret (global variable) v w visited (global variable)

(0) 0 1 {0}

(0,1) 1 2 {0,1}

(0,1,2) 2 - {0,1,2}

(0,1,2) 1 - {0,1,2}

(0,1,2) 0 3 {0,1,2}

(0,1,2,3) 3 4 {0,1,2,3}

(0,1,2,3,4) 4 - {0,1,2,3,4}

(0,1,2,3,4) 3 - {0,1,2,3,4}

(0,1,2,3,4) 0 - {0,1,2,3,4} 10

Breadth First Search (BFS)
Algorithm BFS_Traversal(G,v):

Input: A graph G (stored as adjacency list) and a vertex v of G
Output: A sequence of vertices in bfs traversal order started at v

declare q as a queue of vertices
q.enqueue(v)
label v as visited
while q is non-empty

u ← q.front()
q.dequeue()
ret ← concatenate(ret, (u))
for all unvisited vertices w in G[u] do

q.enqueue(w)
label w as visited 11

BFS example
BFS(G,0):

ret q visited

() (0) {0}

(0) (1,2,3) {0,1,2,3}

(0,1) (2,3) {0,1,2,3}

(0,1,2) (3) {0,1,2,3}

(0,1,2,3) (4) {0,1,2,3,4}

(0,1,2,3,4) () {0,1,2,3,4}

12

Do It Yourself
DFS(G,1)?

DFS(G,3)?

DFS(G,7)?

BFS(G,1)?

BFS(G,3)?

BFS(G,7)?

13

Give ideas to answer these questions
A simple graph G and two vertices u and v are given.

1. Is there a path between v and u?

2. Are v and u in the same connected components?

3. How many connected components are there?

4. How to find a path between v and u?

5. How to find the shortest path between v and u?

14

Minimum Spanning Tree
Defined for weighted undirected graphs

It's a tree

It spans all the vertices

Sum of its edge weights is minimum

15

Minimum Spanning Tree
Which of the following is a spanning tree?

1. {(A,C), (C,E), (C,D), (E,F)}

2. {(A,C), (C,E), (C,D), (E,D)}

3. {(A,B), (A,C), (C,E), (C,D), (E,F)}

4. {(B,C), (D,F), (B,F), (D,E), (A,C)}

5. {(B,C), (D,F), (B,F), (D,E), (E,F)}

16

Kruskal algorithm for minimum spanning tree
Repeatedly pick the edge with minimum weight unless it causes a cycle

How can we check if an edge will cause a cycle in a graph that doesn't already
have one?

Look at the pseudo-code in the next slide and give the time complexity of the
algorithm.

17

18

