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Simple Graphs

A simple graph.

Nodes: {0, 1, 2, 3, 4}

Edges: {{0,1},{0,2},{0,3},{1,2},{3,4}} 
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Directed or Weighted Graphs

A directed and weighted graph. 

Nodes: {A, B, C, D, E}

Edges: {(A,C), (A,D), (B,A), (C,B), (C,D), (E, A)} 
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Path, Cycles, and Connected Components
There are two paths from 1 to 6:
Path1: ({1,2}, {2,3}, {3,5},{5,6})
Path2: ({1,4}, {4,3}, {3,5},{5,6})
There is no path from 3 to 7. 

(1,2,3,4) forms a cycle

This graph is not connected.

connected components of the graph:
{1,2,3,4,5,6} and
{7,8,9}
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Tree and Forest
Tree: a simple connected graph with no cycles

Forest: a simple graph whose connected 
components have no cycles

General trees and binary trees that we have 
seen previously are rooted trees with 
directions imposed on them. 
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Storing the graph

Adjacency list:
0: {1,2,3,}
1: {0,2}
2: {0,1}
3: {0,4}
4:{3}

Adjacency matrix:
0 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 1
0 0 0 1 0
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Storing the graph
Adjacency list:

A: ((C,12),(D,60))
B: ((A,10))
C: ((B,20),(D,32))
D: ()
E: ((A,7))

Adjacency matrix:
00  00  12  60  00
10  00  00  00  00
00  20  00  32  00
00  00  00  00  00
07  00  00  00  00

Ids:
A: 0 
B: 1
C: 2
D: 3
E: 4

labels:
(A, B, C, D, E)
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Graph Traversal (or search)
Depth first search (DFS)

Breadth first search (BFS)

We start from a node and try to either visit all nodes or find a specific node.
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Depth First Search (DFS)
Algorithm DFS_Traversal(G,v): 

Input: A graph G (stored as adjacency list) and a vertex v of G 
Output: A sequence of vertices in dfs traversal order started at v

label v as visited 
ret ← concatenate( ret,(v))
for all unvisited vertices w in G[v] do 

DFS(G,w)
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DFS(G,0):
ret (global variable) v w visited (global variable)

(0) 0 1 {0}

(0,1) 1 2 {0,1}

(0,1,2) 2 - {0,1,2}

(0,1,2) 1 - {0,1,2}

(0,1,2) 0 3 {0,1,2}

(0,1,2,3) 3 4 {0,1,2,3}

(0,1,2,3,4) 4 - {0,1,2,3,4}

(0,1,2,3,4) 3 - {0,1,2,3,4}

(0,1,2,3,4) 0 - {0,1,2,3,4} 10



Breadth First Search (BFS)
Algorithm BFS_Traversal(G,v): 

Input: A graph G (stored as adjacency list) and a vertex v of G 
Output: A sequence of vertices in bfs traversal order started at v

declare q as a queue of vertices
q.enqueue(v)
label v as visited 
while q is non-empty

u ← q.front()
q.dequeue()
ret ← concatenate( ret, (u) )
for all unvisited vertices w in G[u] do 

q.enqueue(w)
label w as visited 11



BFS example
BFS(G,0):

ret q visited

() (0) {0}

(0) (1,2,3) {0,1,2,3}

(0,1) (2,3) {0,1,2,3}

(0,1,2) (3) {0,1,2,3}

(0,1,2,3) (4) {0,1,2,3,4}

(0,1,2,3,4) () {0,1,2,3,4}
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Do It Yourself
DFS(G,1)?

DFS(G,3)?

DFS(G,7)?

BFS(G,1)?

BFS(G,3)?

BFS(G,7)?
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Give ideas to answer these questions
A simple graph G and two vertices u and v are given.  

1. Is there a path between v and u?

2. Are v and u in the same connected components?

3. How many connected components are there?

4. How to find a path between v and u?

5. How to find the shortest path between v and u?
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Minimum Spanning Tree
Defined for weighted undirected graphs

It's a tree

It spans all the vertices

Sum of its edge weights is minimum
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Minimum Spanning Tree 
Which of the following is a spanning tree?

1. {(A,C), (C,E), (C,D), (E,F)}

2. {(A,C), (C,E), (C,D), (E,D)}

3. {(A,B), (A,C), (C,E), (C,D), (E,F)}

4. {(B,C), (D,F), (B,F), (D,E), (A,C)}

5. {(B,C), (D,F), (B,F), (D,E), (E,F)}
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Kruskal algorithm for minimum spanning tree
Repeatedly pick the edge with minimum weight unless it causes a cycle

How can we check if an edge will cause a cycle in a graph that doesn't already 
have one?

Look at the pseudo-code in the next slide and give the time complexity of the 
algorithm.
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