
Data Structures &
Programming

Hash Tables

Golnar Sheikhshab

Hash table: key-based address computation
There is a bucket array of capacity N.

There is a hash function that decides which bucket should contain the entry with
key k.

A good hash function distributes (spreads) items evenly and avoids collision as
much as possible.

There are also collision handling schemes because collision can not be
completely avoided

2

3

Hash function
The second part of the hash table structure (the first part is bucket array)

Maps the key to [0, N-1] (an index in the bucket array)

The goal of hash function is to minimize collision

Has two parts:

Hash code : that maps the key to an integer (unbounded)

Compression : that maps the hash code into [0, N-1]

4

5

Hash Code
The hash code of a key is an integer.

It doesn't need to be in [0, N-1]. It might even be negative!

If the hash code of two keys are the same, we can not avoid collision! So, hash
codes must try really hard to avoid collision.

If k1 = k2 => hash code of k1 must be equal to hash code of k2

6

Possible hash codes
1. Convert to integer

This is good for char, short, int. There won't be any collision.

But for long? We will be ignoring half of the bits. (We are casting down.)

2. Sum of components

The object is seen as a k-tuple of integers (X0, X1, ..., Xk-1) and hash code
will be the sum of the components.

Works better for long.

Not so good for strings ("stop" and "tops" and "pots" will collide). 7

Possible hash codes (continue)
3. Polynomial Hash Codes

The object is still seen as a k-tuple of integers (X0, X1, ..., Xk-1).

 h(k) =

 =

a is a constant.

Bad choice for a? 2^14 or -2^15

Good choices for a? numbers with non-zero low-order bits
 for example 33, 37, 39, and 41 (empirically found for over 50K English words) 8

Possible hash codes (continue)
4. Cyclic Shift Hash Codes

Assuming integer is 32 bits:

9

10

Possible hash codes (continue)
Hashing Floating-Point Quantities

Casting float to int? Bad! You'll be throwing information out even if they have
the same number of bits.

You should interpret the bit sequence as int instead using reinterpret cast

warning: reinterpret cast is not portable (the result depends on the particular
machine’s encoding of types as a pattern of bits).

11

 Compression Functions
Map the hash code to [0, N-1]

1. Division method + picking a prime number as N

2. The MAD method (multiply, add, and divide) + picking a prime number as N

a (!=0) and b are constants that are chosen randomly

12

Dealing with collision
We can't avoid collision altogether. So, we have to deal with it.

We can't directly put (K, V) into A[h(K)] because there might be collision.

Ways to deal with the collision:

1. Separate Chaining

2. Open addressing (umbrella name for a set of methods)

13

Separate Chaining

14

15

Load factor
When we use separate chaining, the maximum size of each bucket is called load
factor. If the hash function is good, the expected load factor is n/N.

Load factor should be bounded by a small constant (preferably below 1).

The functions find, put, and erase in a map implemented with a hash table is
O(load factor). So, if n=O(N), these functions will be of O(1).

16

Open Addressing
BucketArray is not an array of buckets anymore. It's an array of key-value pairs.
We directly insert key-value pairs into it.

Open Addressing is a collective name for

● Linear Probing
● Quadratic Probing
● Double Hashing

17

Linear probing
If A[h(k)] is occupied, check A[(h(k)+i) mod N] for i=1....N until you find the key or
and empty cell.

Do this for both find and put functions.

18

Quadratic probing
Linear probing leads to entry clustering. A collision increase the chance of another
collision and the next collision increases the chance of the next collision even
more.

To reduce this effect, we do quadratic probing.

Everything is the same as before but we check A[h(k)+j^2] for j=1...N if A[h(k)] is
occupied.

Clustering still happens but not as bad as in linear clustering.

19

Double Hashing
To avoid clustering altogether, we throw in another hash function h' as follows:

If A[h(k)] is already occupied, we check A[h(k)+j*h'(k)] for j=1....N

As a result, the number of cells we skip depends on the key k.

h' should not be 0 for any k.

A common choice for h'(k) = q−(k mod q), for some prime number q < N.

20

Deleting in open addressing
In remove, should we try shifting entries? If so, which entries? What if they were
inserted into the right place? This is too difficult.

Instead, we put a special "available" symbol there.

When we are searching for a key, we treat the "available" symbol as an occupied
cell. But when we insert, we treat it as an empty cell.

This means the put function (which should replace or insert if key was absent)
should remember where it saw an "available" cell while searching for the key.

Open addressing saves space but it complicates removal

21

Separate Chaining vs. Open Addressing
Open addressing saves space but is not necessarily faster.

In experimental settings separate chaining is competitive or faster (depending on
the load factor).

So, if space is not scarce, opt for separate chaining.

22

Load Factors and Rehashing
If load factor is too high the map operations start being too slow O(N). For
example in quadratic probing, if load factor is > 0.5 you may need to check N/2
cells (and that will be all the cells you can check) to find a key.

In these cases, rehashing into a new table and with a new hash function could be
a good idea. The new table is usually doubles in size.

Rehashing involves computing the hash function for all items in the hash table and
inserting them again. This by itself is O(N) but just like in expandable arrays this
cost will be amortized over time when new put, find, remove functions take
expected time of O(1).

23

STL map vs. STL unordered_map
STL map is based on a balanced binary search. The keys in STL map are always
ordered but the functions are O(log n).

STL unordered_map however, is based on hash functions and the expected time
complexity is amortized O(1).

When using STL map, all that matters is that the key has an operator<.

When using STL unordered_map, a hash function must be defined for the key
type. Therefore, you can't use unordered_map with a key of type pair<int,int>
unless you define a hash function for this type.

24

Because I don't want you to give up at a certain point when you can go further:

https://www.youtube.com/watch?v=-sUKoKQlEC4

25

https://www.youtube.com/watch?v=-sUKoKQlEC4

Reading Material
Sections 9.2.1 -- 9.2.6 of the textbook

26

