Name
Student No

Simon Fraser University

Computing Science 225
Midterm Examination

Spring 2007
Time: 90 minutes
Last/Family Name:

(Please, PRINT)

First Name:

(Please, PRINT)

Student Number:

Signature:

	Instructor: Aaron Hunter
This examination has 8 pages inclusive.

Verify that you have a complete paper.
· No books, cheat sheets, calculators, or other materials may be used.

· Read each question carefully before answering it.

· Answer all the questions on this paper.

· List any assumptions you make when answering a question.

· Always comment your code.

· The marks for each question are given in [].
Use this to manage your time:

· 1 mark corresponds to 1 minute of work.

· Do not spend more time on a question
than the number of marks assigned to it.

Good luck!

	Q #

Marks

1

/ 10
2

/ 11
3

/ 12
4
/ 12
5

/ 15
Total

 / 60

1. a)
[2 marks] Approximate the following running time functions by providing their closest upper bound expressed using the Big O notation. Note that n represents the size of the input.

i. t(n) = 59n
O(n)
ii. t(n) = log n + n
O(n)
iii. t(n) = n2 + n3 + 4n
O(n3)
iv. t(n) = 3
O(1)
1. b)
[1 mark] State a possible precondition to a pop() operation.
Possible Answer: Stack not empty
1. c) [1 mark] State one possible reason why an enqueue() operation would throw a queue exception.

Possible Answer: The Queue is implemented with a fixed-size array, which is already full.
1. d)
[4 marks] For each of the following situations, which of these ADTs would be most appropriate: (1) a queue, (2) a stack, (3) a list, (4) none of these?

i. People who are put on hold when they call an airline to make a reservation.
queue

ii. The boxes in the trace of a recursive method.

stack

iii. A list of birthdays in chronological order.

list

iv. Customers in line at a coffee shop.

queue
1. e) [1 mark] Give one advantage that a reference-based implementation of ADT List has over an array-based implementation.
Possible Answer: No fixed limit on the size.
1. f) [1 mark] Give one advantage that an array-based implementation of ADT List has over a reference-based implementation.

Possible Answer: Every position of the List can be accessed in one step.

2. a) [6 marks] Briefly define/explain the following terms.

doubly linked list:

a linked list where each node has a reference to the next node,

as well as a reference to the previous node
fail-safe programming:
creating programs that perform reasonably no matter how they

are used. i.e. all possible user inputs are handled appropriately
Java interface:

a collection of method specifications without any
implementations – implemented by a Java class
b) [5 marks] For each problem, indicate the data that is stored in the appropriate variables at the end of the given operations.

	Pseudocode
	Data

	aStack.createStack();

aStack.push(5);

aStack.pop()

if(aStack.isEmpty())
 aStack.push(6);

aStack.push(7);

	aStack=

7

6

	aQueue.createQueue();

aQueue.enqueue(5);

aQueue.enqueue(6);

aQueue.enqueue(7);

aStack.createStack();

while(!aQueue.isEmpty)

 aStack.push(aQueue.dequeue());

	aQueue=

empty
aStack=

7

6

5

	aStack.createStack();

for(int i=0; i<5; i++)

 aStack.push(i+1);

aQueue.createQueue();

aQueue.enqueue(aStack.pop());

aQueue.enqueue(aStack.pop());

	aQueue=

5 4
aStack=

3

2

1

3 a). [6 marks] Using the ADT Stack methods, write an algorithm that takes two stacks Stack1 and Stack2 as arguments, and returns the number of elements in Stack1. The contents of Stack1 must be the same at the beginning and end of the method’s execution.
Two solutions:

	numElements(Stack1, Stack2):

int i = 0;

while(Stack1 is not empty)

Stack2.push(Stack1.pop());

i++;

int count = i;

while(i>0)

Stack1.push(Stack2.pop());

i--;

return count;

	numElements(Stack1, Stack2):

Stack2.popall();

int count = 0;

while(Stack1 is not empty)
 Stack2.push(Stack1.pop());
 count++;

while(Stack2 is not empty)

 Stack1.push(Stack2.pop());
return count;

b) [6 marks] Using the ADT Queue methods, write an algorithm that takes a Queue of positive integers as an argument, and prints every integer in the Queue to the screen. The input Queue must be the same at the beginning and end of the method’s execution, and you are not permitted to use an additional Queues/Stacks/Lists for storage.

Precondition: aQueue is a Queue that contains only positive integers
displayContents(aQueue):

aQueue.enqueue(-1);

\\ use a negative int to mark the end of the queue

while(aQueue.peek() is not -1)

\\ if you have not reached the -1

int curr = aQueue.dequeue();
\\ retrieve the first element

Print contents of curr;

\\ print it to the screen

aQueue.enqueue(curr);

\\ add it back to the end of the queue

aQueue.dequeue();

\\ when the -1 is reached, remove it and halt
4. a) [6 marks] Write a recursive Java method to count number of items in a linked list. Assume that the linked list is passed to your method with a reference to the head node. [Note – the public methods for the Node class are listed on page 6].
public int countElements(Node head)

{

if(head==null)
\\ base case: return 0 if the linked list is empty

return 0;

\\ recursive case: return 1 plus the number of elements counted

else

\\ starting at the next position

return 1 + countElements(head.getNext());
}
4 b). [6 marks] Write a recursive Java method that takes a linked list as input, and removes every element with an even index. (i.e. remove the 2nd node, the 4th node, the 6th node, etc). Assume that the linked list is passed to your method with a reference to the head node.
public void removeEvens(Node head)
{

if(head==null || head.getNext()==null)

\\ base case: length 0 or 1 linked lists

return;

else

{

Node nextNode = head.getNext().getNext();
\\ find the 3rd node

head.setNext(nextNode);

\\ skip the 2nd node

removeEvens(nextNode);

\\ recursive call from position 3

}

}
5.
A deque is a data collection that allows for efficient insertion and removal of elements on either of its ends. Hence you can push elements at the head or at the tail of such data collection and you can pull elements from its head or from its tail.

For example, consider the following deque (depicted here as a sequence of numbers):
head -> 5 7 23 51 76 <- tail
I obtain 76 if I pull an element from its tail and obtain the following modified deque:

head -> 2 5 7 23 51 <- tail
if I then push 2 at its head.

Consider the design and implementation of such a Deque abstract data type (ADT) class which must satisfy the following requirements and public interface (partial):

· Object pullHead()
Description: Pulls and removes the first item placed at the 'head' end of the deque.
· Object pullTail()
Description: Pulls and removes the first item placed at the 'tail' end of the deque.
· void pushHead(Object thisObject)
Description: Puts the specified element to the 'head' end of the deque.
· void pushTail(Object thisObject)
Description: Puts or appends the specified element to the 'tail' end of the deque.
	Assume that the Node class has already been implemented, with the following public methods:

public Node(Object newElement)

public Node(Object newElement, Node nextNode)

public Object getElement()

public void setElement(Object newElement)

public void setNext(Node nextNode)

public Node getNext()

5. a)
[3 marks] We want to design a reference-based implementation of the Deque ADT. In the brackets of the class Deque definition provided below, write the attributes (data fields members) section of your Deque ADT class. Use proper Java syntax and appropriate commenting.
Class Definition:

public class Deque
{

private Node head; //pointing to first element/node in Deque

private Node tail; //pointing to last element/node in Deque

private int size; //represent the number of elements
 // stored in Deque (THIS IS OPTIONAL)
...

}

5. b) [6 marks] In the space below, provide a Java implementation of the pullHead() method. Make sure you consider any special cases, and the throw the Exception appropriately.
public Object pullHead() throws DequeException
{

if(size==0)

throw new DequeException();

Node returnNode = head;

if(size==1)

{

head=null;

tail=null;

}

else

{

head = head.getNext();

}

size--;

return returnNode.getElement();

}
5. c)
[6 marks] Write the algorithm for the method copy (or clone) of your Deque ADT class. The post condition for this method is as follows:

// POST : Creates an identical yet distinct deque object
// to “this” deque and returns the new deque object.
Your algorithm should not rely on details of your implementation, and it should be detailed enough so that each of its statements can easily be converted into a Java statement. If your method requires a PRE condition, make sure you provide it along with your algorithm. Write down all your assumptions.

Possible Answer:

Copy

Get a new deque object

If this deque is empty, return the empty new deque object
Set current to be a reference to the head node of this deque.
while (current is not null):

Get the element in current.

Define a new node currentcopy containing that element

Use the pushTail() deque operation to insert that new node into the new deque
(this will ensure that the order of the nodes in the new deque will be the same as the order of the nodes in this deque)

Move on to the next node of this deque (set current to current.getNext())

Return the new deque

Page

