
Balanced Trees.

A balanced life is a prefect life.

Balanced Search Trees

• The efficiency of the binary search tree
implementation of the ADT table is related to the
tree’s height
– Height of a binary search tree of n items

• Maximum: n

• Minimum: log2(n + 1)

• Height of a binary search tree is sensitive to the
order of insertions and deletions

• Variations of the binary search tree
– Can retain their balance despite insertions and
deletions

2-3 Trees

• A 2-3 tree

– Has 2-nodes and 3-nodes

• A 2-node

– A node with one data item and two children

• A 3-node

– A node with two data items and three children

– Is not a binary tree

– Is never taller than a minimum-height binary tree

• A 2-3 tree with n nodes never has height greater than

log2(n + 1)

2-3 Trees

• Rules for placing data items in the nodes of a 2-3 tree
– A 2-node must contain a single data item whose search key

is

• Greater than the left child’s search key(s)

• Less than the right child’s search(s)

– A 3-node must contain two data items whose search keys S
and L satisfy the following

• S is

– Greater than the left child’s search key(s)

– Less than the middle child’s search key(s)

• L is

– Greater than the middle child’s search key(s)

– Less than the right child’s search key(s)

– A leaf may contain either one or two data items

2-3 Trees

Figure 13Figure 13--33

Nodes in a 2-3 tree a) a 2-node; b) a 3-node

A 2-3 tree

20

50 90

120 150

130 140100 11030 4010

70

8060 160

2-3 inorder traversal.

inorder(TwoTreeNode n){

if (n == null)

return;

if (n is a 3-node){

inorder (n.leftChild);

visit (n.firstData);

inorder (n.middleChild);

visit (n.secondData);

inorder (n.rightChild);

}

if (n is a 2-node){

inorder (n.leftChild);

visit (n.data);

inorder (n.rightChild);

}

}

A 2-3 tree

20

50 90

120 150

130 140100 11030 4010

70

8060 160

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160

Inorder Traversal:

Searching a 2-3 tree

TreeNode Search(TreeNode n , item x){

if (n == null)

return null;

if (n is a 2-node){

if (n.data == x)

return n;

else if (n.data < x)

return n.rightChild;

else

return n.leftChild;

}

else { //n is a 3-node

if (n.firstData == x or n.secondData == x)

return n;

if (x < n.firstData)

return n.leftChild;

if (x < n.secondData)

return n.middleChild;

return n.rightChild;

}

}

2-3 Trees

• Searching a 2-3 tree
– Searching a 2-3 tree is as efficient as searching
the shortest binary search tree
• Searching a 2-3 tree is O(log2n)

– Since the height of a 2-3 tree is smaller than the
height of a balanced tree the number of compared
node is less than that of binary search tree.

– However, we need to make two comparisons at
the 3-nodes in a 2-3 tee.

– Number of comparisons approximately equal to
the number of comparisons required to search a
binary search tree that is as balanced as possible

2-3 Trees

• Advantage of a 2-3 tree over a balanced binary

search tree

– Maintaining the balance of a binary search tree is

difficult

– Maintaining the balance of a 2-3 tree is relatively easy

2-3 Trees: Inserting Into a 2-3

Tree
• First we need to locate the position of the new item in the

tree.

– This is done by a search on the tree

– The location for inserting a new item is always a leaf in 2-3 tree

• Insertion into a 2-node leaf is simple

20

10 30 40

20

30 4010 15

Inserting 15

• Insertion into a 3-node leaf splits the leaf

Inserting 3520

30 4010 15
30

20

4010 15 35 10 15

20 35

30 40

splitting

2-3 Trees: The Insertion

Algorithm
• To insert an item I into a 2-3 tree

– Locate the leaf at which the search for I would terminate

– Insert the new item I into the leaf

– If the leaf now contains only two items, you are done

– If the leaf now contains three items, split the leaf into two
nodes, n1 and n2

Figure 13Figure 13--1212

Splitting a leaf in a 2-3 tree

• When a leaf has more than 3 values we
need to move the middle value to the
leaf’s parent and split the leaf.

• If the leaf’s parent is a 2-node it simply
becomes a 3-node.

• If it is a 3-node it will contain 3 values after
the insertion so we need to split it as well.

• Splitting an internal 3-node is very similar
to splitting a 3-node leaf.

10

• Insertion into a 3-node leaf splits the leaf

Inserting 12

10 15

20 35

30 40

50

12 15

20 35

30 40

50

10

• Insertion into a 3-node leaf splits the leaf

Inserting 12

10 15

20 35

30 40

50

12 15

20 35

30 40

50

Splitting L

10

20 35

30 40

50

12

15

L

V

10

• Insertion into a 3-node leaf splits the leaf

Inserting 12

10 15

20 35

30 40

50

12 15

20 35

30 40

50

Splitting L

10

20 35

30 40

50

12

15

Splitting V

L

V

10

20

35

30 40

12

15

V

50

2-3 Trees: The Insertion

Algorithm
• When an internal node contains three items

– Move the middle value to the node’s parrent

– Split the node into two nodes

– Accommodate the node’s children

Figure 13Figure 13--1313

Splitting an internal node

in a 2-3 tree

2-3 Trees: The Insertion

Algorithm
• When the root contains three items

– Split the root into two nodes

– Create a new root node

Figure 13Figure 13--1414

Splitting the root of a 2-3 tree

2-3 Trees: Deleting a node

• Deletion from a 2-3 tree

– Does not affect the balance of the tree

• Deletion from a balanced binary search tree

– May cause the tree to lose its balance

2-3 Trees: Deleting a node

• The delete strategy is the inverse of the insert

strategy.

• We merge the nodes when the become empty.

• We always want to begin the deletion process

from a leaf (it’s just easier this way).

• Hence, for deleting an internal node first we

exchange its value with a leaf and delete the

leaf.

10

20 35

30 40

50

10

30 35

-- 40

50

Deleting 20
Replace 20 with

its inorder

successor

Remove this leaf next

10

20 35

30 40

50

10

30 35

40

50

Deleting 20
Replace 20 with

its inorder

successor

This must become a 2-node, move one of its

values down.

10

20 35

30 40

50

10 35 40

30

50

Deleting 20
Replace 20 with

its inorder

successor

20 35

30 40

50

30 35

-- 40

50

Deleting 20
Replace 20 with

its inorder

successor

Fill this leaf by borrowing a value from

The left sibling (this is called redistributing)

10 15
10 15

20 35

30 40

50

30 35

15 40

50

Deleting 20
Replace 20 with

its inorder

successor

This does not work.

10 15
10

20 35

30 40

50

15 35

30 40

50

Deleting 20
Replace 20 with

its inorder

successor

Redistribute

10 15
10

• Sometimes we may need to merge an

internal node.

10 40

30

50

10 --

40

50

Delete this node

Replace 30 with

its inorder

successor

• Sometimes we may need to merge an

internal node.

10 40

30

50

10 --

40

50

10

--

50

40

60 70

55 65 80

Remove the empty leaf

by merging

• Sometimes we may need to merge an

internal node.

65 80

10 40

30

50

10 --

40

50

10

--

50

40

60 70

55 65 80

10

50

60

40

70

55

Redistribute to fill the

empty internal node

2-3 Trees: Deletion

Figure 13Figure 13--19a and 19a and

1313--19b19b

a) Redistributing values;

b) merging a leaf

2-3 Trees: The Deletion

Algorithm

Figure 13Figure 13--19c and 19c and

1313--19d19d

c) redistributing values

and children; d) merging

internal nodes

2-3 Trees: The Deletion

Algorithm

Figure 13Figure 13--19e19e

e) deleting the root

2-3 Trees: The Deletion

Algorithm
• When analyzing the efficiency of the
insertItem and deleteItem algorithms, it is
sufficient to consider only the time required to
locate the item

• A 2-3 implementation of a table is O(log2n) for all
table operations

• A 2-3 tree is a compromise
– Searching a 2-3 tree is not quite as efficient as
searching a binary search tree of minimum height

– A 2-3 tree is relatively simple to maintain

2-3-4 Trees
• Rules for placing data items in the nodes of a 2-3-4

tree
– A 2-node must contain a single data item whose search keys

satisfy the relationships pictured in Figure 13-3a

– A 3-node must contain two data items whose search keys
satisfy the relationships pictured in Figure 13-3b

– A 4-node must contain three data items whose search keys
S, M, and L satisfy the relationship pictured in Figure 13-21

– A leaf may contain either one, two, or three data items

Figure 13Figure 13--2121

A 4-node in a 2-3-4 tree

• A 2-3-4 tree.

2-3-4 Trees: Searching and

Traversing a 2-3-4 Tree
• Search and traversal algorithms for a 2-3-4 tree

are simple extensions of the corresponding

algorithms for a 2-3 tree

2-3-4 Trees: Inserting into a 2-3-

4 Tree
• The insertion algorithm for a 2-3-4 tree

– Splits a node by moving one of its items up to its

parent node

– Splits 4-nodes as soon as it encounters them on the

way down the tree from the root to a leaf

• Result: when a 4-node is split and an item is

moved up to the node’s parent, the parent cannot

possibly be a 4-node and can accommodate

another item

Result of inserting 10, 60, 30 in an empty 2-3-4 tree

Now inserting 20. before that the 4-node <10, 30, 60> must be split

Result of inserting 10, 60, 30 in an empty 2-3-4 tree

Inserting 20. before that the 4-node <10, 30, 60> must be split

Now insert 20

Result of inserting 10, 60, 30 in an empty 2-3-4 tree

Inserting 20. before that the 4-node <10, 30, 60> must be split

Now insert 20

Inserting 50 and 40.

Inserting 70. Before that node <40, 50, 60> must split.

Splitting <40, 50, 60>

Now 70 is inserted.

2-3-4 Trees: Splitting 4-nodes

During Insertion
• A 4-node is split as soon as it is encountered

during a search from the root to a leaf

• The 4-node that is split will

– Be the root, or

– Have a 2-node parent, or

– Have a 3-node parent

Figure 13Figure 13--2828

Splitting a 4-node root during

insertion

2-3-4 Trees: Splitting 4-nodes

During Insertion

Figure 13Figure 13--2929

Splitting a 4-node whose

parent is a 2-node during

insertion

2-3-4 Trees: Splitting 4-nodes

During Insertion

Figure 13Figure 13--3030

Splitting a 4-node whose

parent is a 3-node during

insertion

Inserting 90. First the node <60, 70, 80> must split.

Inserting 90. First the node <60, 70, 80> must split.

splitting

Inserting 90. First the node <60, 70, 80> must split.

splitting

Inserting 90 in node <80>

Inserting 100. First the root must split (because it’s the first 4-node encountered in

the path for searching 100 in the tree).

Inserting 100. First the root must split (because it’s the first 4-node encountered in

the path for searching 100 in the tree).

Inserting 100 in node <80, 90>

2-3-4 Trees: Deleting from a

2-3-4 Tree
• The deletion algorithm for a 2-3-4 tree is the

same as deletion from a 2-3 tree.

– Locate the node n that contains the item theItem

– Find theItem’s inorder successor and swap it with

theItem (deletion will always be at a leaf)

– Delete the leaf.

– To ensure that theItem does not occur in a 2-node

• Transform each 2-node the you encountered during the
search for theItem into a 3-node or a 4-node

How do we delete a leaf

– If that leaf is a 3-node or a 4-node, remove
theItem and we are done.

• What if the leaf is a 2-node

– This is called underflow

– We need to consider several cases.

– Case 1: the leaf’s sibling is not a 2-node

• Transfer an item from the parent into the leaf and replace the

pulled item with an item from the sibling.

• Case 2: the leaf’s sibling is a 2-node but

it’s parent is not a 2-node.

– We fuse the leaf and sibling.

• Case 3: the leaf’s sibling and parent are

both 2-node.

2-3-4 Trees: Concluding

Remarks
• Advantage of 2-3 and 2-3-4 trees

– Easy-to-maintain balance

• Insertion and deletion algorithms for a 2-3-4 tree

require fewer steps that those for a 2-3 tree

• Allowing nodes with more than four children is

counterproductive

• Red-Black trees (Optional).

• A 2-3-4 tree requires more space than a binary search
tree that contains the same data.

• It’s because the nodes of a 2-3-4 must accommodate 3
data values.

• We can use a special BST called the red-black tree that
has the advantages of a 2-3-4 tree without the memory
over head.

• The idea is to represent the 3-nodes and 4-nodes in a 2-
3-4 tree as an equivalent BST node.

• Red-black representation of a 4-node

• Red-black representation of a 3-node

Red-black equivalent of a 2-3-4 tree

Red-black tree properties.

• Let

– N: number of internal nodes.

– H: height of the tree.

– B: black height.

• Property 1:

• Property 2:

• Property 3:

• This implies that searches take O(log N)

• In addition false nodes are added so that

every (real) node has two children

– These are pretend nodes, they don’t have

to have space allocated to them

– The incoming edges to these nodes are

colored black

–We do not count them when measuring a

height of nodes

Pretend nodes are squared nodes at the bottom.

Important properties

• No two consecutive red edges exist in a

red-black tree.

• The number of black edges in all the paths

from root to a leaf is the same.

Insertion into Red-Black Trees

1. Perform a standard search to find the leaf where the
key should be added

2. Replace the leaf with an internal node with the new key

3. Color the incoming edge of the new node red

4. Add two new leaves, and color their incoming edges
black

5. If the parent had an incoming red edge, wenow have
two consecutive red edges! We must reorganize tree to
remove that violation. What must be done depends on
the sibling of the parent.

• Inserting new node G.

Insertion into a red-black tree

Case 2. Continued.

Case 2. Continued.

Red-black tree deletion

• As with the binary search tree we will try to
remove a node with at most one children.

• A node with at most one children is a node with
at least one pretended or external child (i.e the
null pointers that are treated as fake leaves).

• To remove an internal node we replace its value
with the value of its successor and remove the
successor node.

• The successor node always has at least one
external child.

Square nodes are called external or pretended nodes.

Deletion algorithm
• Assume we want to delete node v.

• V has at leas one external child.

1. Remove v by setting its parent points to u.

2. If v was red color u black and we are done.

3. If v was black color u double black.

4. Next, remove the double black edges.

We are done in this case We need to reconstruct the tree.

Eliminating the double black nodes.

• The intuitive idea is to perform a “color compensation’’

• Find a red edge nearby, and change the pair
(red , double black) into (black , black)

• As for insertion, we have two cases:
– restructuring, and

– recoloring (demotion, inverse of promotion)

• Restructuring resolves the problem locally, while
recoloring may propagate it two levels up

• Slightly more complicated than insertion, since two
restructurings may occur (instead of just one)

