
20 September, 2010

Andreas Jakl
Senior Technical Consultant
Forum Nokia

Basics of Qt

v3.0.0

Contents
– Signals and Slots

– Widgets, Layouts and Styles

– Meta-Objects and Memory Management

Signals and Slots

Callbacks?
• Traditional callbacks

– Callback is pointer to a function

– Called when appropriate (event notification, ...)

• Problems

– Not type-safe: does the caller use the correct arguments?

– Less generic: callback strongly coupled to processing function.

Processing function must know which callback to call.

Signals & Slots
• Signal

– Emitted when a particular event occurs (e.g., clicked())

– Qt widgets: predefined signals

– Also create your own signals

• Slot

– Function called in response to a signal

– Qt widgets: predefined slots (e.g., quit())

– Also create your own slots

• Connection signals  slots established by developer,

handled by Qt framework

Connections
Signals

signal1

Slots
slot1

signal2

slot2
slot3

Signals

signal1

Slots
slot1
slot2

Signals

Slots
slot1
slot2
slot3

Signals

signal1

Slots
slot1

connect(Object1, signal1, Object2, slot1)
connect(Object1, signal1, Object2, slot2)

connect(Object3, signal1, Object4, slot3)

connect(Object1, signal2, Object4, slot1)

co
n

n
e

ct(O
b

je
ct2

, sig
n

a
l1

, O
b

je
ct4

, slo
t3

)

Find Signals and Slots
• Look up signals and slots of Qt

classes in the documentation

Example: Multiple Signal-Slot Connections
Restore window to

normal size

Show an about dialog

and then maximize the
window

Exit the application

Example: Connections
QPushButton

but1
Signals

clicked

Slots

QWidget
win

Signals

clicked

Slots
showNormal()

showMaximized()

QApplication
app

Signals

Slots

aboutQt()

quit()

QPushButton
but2

Signals

clicked

Slots

QPushButton
but3

Signals

clicked

Slots

#include <QApplication>

#include <QPushButton>

#include <QVBoxLayout>

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

QWidget* win = new QWidget();

QVBoxLayout* layout = new QVBoxLayout(win);

QPushButton* but1 = new QPushButton("Normal size");

but1->resize(150, 30);

layout->addWidget(but1);

QPushButton* but2 = new QPushButton("About and Maximize");

but2->resize(150, 30);

layout->addWidget(but2);

QPushButton* but3 = new QPushButton("Exit");

but3->resize(150, 30);

layout->addWidget(but3);

QObject::connect(but1, SIGNAL(clicked()), win, SLOT(showNormal()));

QObject::connect(but2, SIGNAL(clicked()), &app, SLOT(aboutQt()));

QObject::connect(but2, SIGNAL(clicked()), win, SLOT(showMaximized()));

QObject::connect(but3, SIGNAL(clicked()), &app, SLOT(quit()));

win->show();

return app.exec();

}

aboutQt() and

showMaximized()

executed one after

another

Layouts
Most common layouts

– QHBoxLayout: horizontal, from left to right

(right to left for some cultures)

– QVBoxLayout: vertical, top to bottom

– QGridLayout: grid

– QFormLayout: manages input widgets and associated labels

– QStackedLayout: widgets on top of each other, switch index

of currently visible widget

• Layouts can be nested

– Add new layout to existing layout like a widget:

l->addLayout(l2)

Styles
Style can be set using

-style <name> command-

line option.

Windows XP/Vista/7 and
Macintosh styles are only

available on native platforms
(relies on platform’s theme

engines)

It’s possible to create own
styles.

plastique cleanlooks

windowsvista windowsxp windows

macintosh motif cde

Example 2
• Synchronize two widgets

– Changing the value in one automatically changes the other

Signals

valueChanged(int)

Slots

setValue(int)

Signals

valueChanged(int)

Slots

setValue(int)

#include <QApplication>

#include <QHBoxLayout>

#include <QSpinBox>

#include <QSlider>

int main(int argc, char *argv[]) {

QApplication app(argc, argv);

QWidget* win = new QWidget();

win->setWindowTitle("Synchronized Widgets");

QHBoxLayout* layout = new QHBoxLayout(win);

QSpinBox* spin = new QSpinBox();

spin->setMinimum(0);

spin->setMaximum(100);

layout->addWidget(spin);

QSlider* slider = new QSlider(Qt::Horizontal);

slider->setMinimum(0);

slider->setMaximum(100);

layout->addWidget(slider);

QObject::connect(spin, SIGNAL(valueChanged(int)),

slider, SLOT(setValue(int)));

QObject::connect(slider, SIGNAL(valueChanged(int)),

spin, SLOT(setValue(int)));

spin->setValue(50);

win->show();

return app.exec();

}

Signal Parameters
Transmit additional information

– Specify type of argument(s)

– Signal has to be compatible to the slot

(same parameter type(s))

QObject::connect(spin, SIGNAL(valueChanged(int)),

slider, SLOT(setValue(int)));

Signal Parameters
• Types not automatically casted by Qt

– Signals & slots with exactly the specified parameters have to exist

– Otherwise: no compilation error / warning

– But: warning at runtime when executing connect():

• → Signals & slots are type safe

– No connection if either sender or receiver doesn’t exist

– Or if signatures of signal and slot do not match

• connect() returns boolean value indicating success

QObject::connect: Incompatible sender/receiver arguments

QSpinBox::valueChanged(QString) --> QSlider::setValue(int)

Signal & Slot Processing
setValue(50) is called in the source code

QSpinBox emits valueChanged(int) signal with int argument of 50

Argument is passed to QSlider’s setValue(int) slot, sets slider value to 50

Argument is passed to QSpinbox’s setValue(int) slot, but value is already set to 50.
 doesn’t emit any further signal to prevent infinite recursion.

QSlider emits valueChanged(int) signal with int argument of 50

signal  slot

signal  slot

Signals & Slots
• Type safe

– Signal signature must match signature of receiving slot

– (Slot might also have shorter signature and ignore rest of the arguments)

• Loosely coupled

– Emitter doesn’t know or care which slots receive signal

– Information encapsulation

• Integrated, independent components

– Slots are normal C++ member functions

– Don’t know if signals are connected to them

Manual Signal & Slots
#ifndef COUNTER_H

#define COUNTER_H

#include <QObject>

class Counter : public QObject

{

Q_OBJECT

public:

Counter() { m_value = 0; }

int value() const { return m_value; }

public slots:

void setValue(int value);

signals:

void valueChanged(int newValue);

private:

int m_value;

};

#endif // COUNTER_H

#include "counter.h"

void Counter::setValue(int value)

{

if (value != m_value)

{

m_value = value;

emit valueChanged(value);

}

}

counter.h counter.cpp

Own Class that represents
behaviour of Example 2

#include <QtGui/QApplication>

#include <QMessageBox>

#include "counter.h"

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

Counter a, b;

QObject::connect(&a, SIGNAL(valueChanged(int)),

&b, SLOT(setValue(int)));

a.setValue(12); // a.value() == 12, b.value() == 12

QMessageBox msgBox;

msgBox.setText("a = " + QString::number(a.value()) + ", b = " + QString::number(b.value()));

msgBox.exec();

b.setValue(48); // a.value() == 12, b.value() == 48

msgBox.setText("a = " + QString::number(a.value()) + ", b = " + QString::number(b.value()));

msgBox.exec();

app.quit();

return 1;

}

main.cpp

Meta Objects

Qt Meta-Object System
• C++ extended with meta-object mechanism:

Introspection

– Obtain meta-information about QObject

subclasses at runtime

– Used for: getting list of signals & slots,

properties and text translation

QObject
• Meta information not supported by standard C++

– QObject class

• Base class for objects that use meta-object system

– Q_OBJECT macro

• Enables meta-object features

• Without ;

– “moc” tool

• Parses Q_OBJECT macro

• Extends source code with additional functions (extra files)

• Removes the signals, slots and emit keywords so compiler sees standard C++

• Advantage: works with any C++ compiler

#include <QObject>

class Counter : public QObject

{

Q_OBJECT

[...]

};

Meta-Object Features
• Features provided by meta-object code:

– Signals and slots

– metaObject() – returns associated meta-object for the class

– QMetaObject::className() – returns class name as a string,

without requiring native run-time type information (RTTI) support

through the C++ compiler

– inherits() – returns whether this instance inherits the specified QObject class

– tr() – translate strings

– setProperty() and property() – dynamically set and get properties by name

Casting
• Meta-object information can be used for casting:

• Similar, but less error-prone:

if (widget->inherits("QAbstractButton")) {

QAbstractButton *button = static_cast<QAbstractButton*>(widget);

button->toggle();

}

if (QAbstractButton *button = qobject_cast<QAbstractButton*>(widget))

button->toggle();

More on... Signals
• Emitted signal

– Slot usually executed immediately

(like normal function call)

– Code after emit keyword executed after

all slots returned

– Queued connections: slots executed later

• 1 signal  n slots

– Slots executed one after another (arbitrary order)

• Implementation

– Automatically generated by moc

– Define in .h, do not implement in .cpp file

– Can never have return values ( use void)

– Good style: arguments should not use special types (reusability)

#include <QObject>

class Counter : public QObject {

Q_OBJECT

[...]

signals:

void valueChanged(int newValue);

[...]

};

More on... Slots
• C++ function

– Can be called directly/normally

– If connected to and invoked by signal: works

regardless of access level. Arbitrary class can

invoke private slot of an unrelated class instance.

– Slots can be virtual, but not static

• Overhead compared to direct call

– Does not matter in practice

– Around 10x slower than direct, non-virtual call

– Sounds a lot, but isn’t compared to for example new/delete operations

– i586-500: emit per second

2,000,000 signals  1 slot.

1,200,000 signals  2 slots.

#include <QObject>

class Counter : public QObject {

Q_OBJECT

[...]

public slots:

void setValue(int value);

[...]

};

Qt Class Hierarchy
QLayoutItem QObject QPaintDevice QString

QLayout QWidget QImage

QBoxLayout QDialog

...
......

...

Many objects

(and all widgets)
derived from QObject

(directly or indirectly)

Memory Management
• Parent-child hierarchy implemented in QObject

– Initialization with pointer to parent QObject

parent adds new object to list of its children

– Delete parent: automatically deletes all its children (recursively)

– Delete child: automatically removed from parent’s child list

–  Some memory management handled by Qt, only delete objects created

with new without parent

• Widgets

– Parent has additional meaning: child widgets shown within parent’s area

Example: Parent-Child

– Layout is a child of parent widget

– Push button added to layout, but widget takes ownership

• Directly adding push button to the parent widget:

– Also displays push button, but not managed by layout manager

QWidget* win = new QWidget();

QVBoxLayout* layout = new QVBoxLayout(win);

QPushButton* but = new QPushButton("Label");

layout->addWidget(but);

win->show();

QWidget* win = new QWidget();

QVBoxLayout* layout = new QVBoxLayout(win);

QPushButton* but = new QPushButton("Label", win);

win->show();

QWidget

QVBoxLayout QPushButton

Example: Parent-Child II
• Helpful: print parent-child relationship

QWidget* win = new QWidget();

QVBoxLayout* layout = new QVBoxLayout(win);

QPushButton* but = new QPushButton("Label");

layout->addWidget(but);

win->dumpObjectTree();

QWidget::

QVBoxLayout::

QPushButton::

Console

Creating Objects
• Objects inheriting from QObject are allocated on the heap using new

– If a parent object is assigned, it takes ownership of the newly created object – and

eventually calls delete

• Objects not inheriting QObject are allocated on the stack, not the heap

• Exceptions

– QFile and QApplication (inheriting QObject) are usually allocated on the stack

– Modal dialogs are often allocated on the stack, too

QLabel *label = new QLabel("Some Text", parent);

QStringList list;

QColor color;

Thank You.

